Automated Layer Segmentation of Optical Coherence Tomography Images

被引:60
|
作者
Lu, Shijian [1 ]
Cheung, Carol Yim-lui [2 ]
Liu, Jiang [3 ]
Lim, Joo Hwee [3 ]
Leung, Christopher Kai-shun [4 ]
Wong, Tien Yin [2 ]
机构
[1] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
[2] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 168751, Singapore
[3] I2R A STAR, Singapore 138632, Singapore
[4] Chinese Univ Hong Kong, Dept Ophthalmol & Visual Sci, Hong Kong, Hong Kong, Peoples R China
关键词
Computer-aided diagnosis; glaucoma; optical coherence tomography (OCT); OCT layer segmentation; RETINAL LAYER; THICKNESS;
D O I
10.1109/TBME.2010.2055057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Under the framework of computer-aided diagnosis, optical coherence tomography (OCT) has become an established ocular imaging technique that can be used in glaucoma diagnosis by measuring the retinal nerve fiber layer thickness. This letter presents an automated retinal layer segmentation technique for OCT images. In the proposed technique, an OCT image is first cut into multiple vessel and nonvessel sections by the retinal blood vessels that are detected through an iterative polynomial smoothing procedure. The nonvessel sections are then filtered by a bilateral filter and a median filter that suppress the local image noise but keep the global image variation across the retinal layer boundary. Finally, the layer boundaries of the filtered nonvessel sections are detected, which are further classified to different retinal layers to determine the complete retinal layer boundaries. Experiments over OCT for four subjects show that the proposed technique segments an OCT image into five layers accurately.
引用
收藏
页码:2605 / 2608
页数:4
相关论文
共 50 条
  • [41] Evaluation of Automated Segmentation Algorithms for Optic Nerve Head Structures in Optical Coherence Tomography Images
    Duan, Xiangyun J.
    Jefferys, Joan L.
    Quigley, Harry A.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (10) : 3816 - 3826
  • [42] Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics
    Giarratano, Ylenia
    Bianchi, Eleonora
    Gray, Calum
    Morris, Andrew
    MacGillivray, Tom
    Dhillon, Baljean
    Bernabeu, Miguel O.
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (13): : 1 - 10
  • [43] Automated segmentation of retinal layers from optical coherence tomography images using geodesic distance
    Duan, Jinming
    Tench, Christopher
    Gottlob, Irene
    Proudlock, Frank
    Bai, Li
    [J]. PATTERN RECOGNITION, 2017, 72 : 158 - 175
  • [44] Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning
    Masood, Saleha
    Fang, Ruogu
    Li, Ping
    Li, Huating
    Sheng, Bin
    Mathavan, Akash
    Wang, Xiangning
    Yang, Po
    Wu, Qiang
    Qin, Jing
    Jia, Weiping
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning
    Saleha Masood
    Ruogu Fang
    Ping Li
    Huating Li
    Bin Sheng
    Akash Mathavan
    Xiangning Wang
    Po Yang
    Qiang Wu
    Jing Qin
    Weiping Jia
    [J]. Scientific Reports, 9
  • [46] Stack generalized deep ensemble learning for retinal layer segmentation in Optical Coherence Tomography images
    Anoop, B. N.
    Pavan, Rakesh
    Girish, G. N.
    Kothari, Abhishek R.
    Rajan, Jeny
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (04) : 1343 - 1358
  • [47] CTS-Net: A Segmentation Network for Glaucoma Optical Coherence Tomography Retinal Layer Images
    Xue, Songfeng
    Wang, Haoran
    Guo, Xinyu
    Sun, Mingyang
    Song, Kaiwen
    Shao, Yanbin
    Zhang, Hongwei
    Zhang, Tianyu
    [J]. BIOENGINEERING-BASEL, 2023, 10 (02):
  • [48] Automated Segmentation of Intraretinal Cystoid Fluid in Optical Coherence Tomography
    Wilkins, Gary R.
    Houghton, Odette M.
    Oldenburg, Amy L.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 1109 - 1114
  • [49] Automated Segmentation of Pathological Cavities in Optical Coherence Tomography Scans
    Pilch, Matthaeus
    Stieger, Knut
    Wenner, Yaroslava
    Preising, Markus N.
    Friedburg, Christoph
    Bexten, Erdmuthe Meyer Zu
    Lorenz, Birgit
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (06) : 4385 - 4393
  • [50] Automated volumetric segmentation of retinal fluid on optical coherence tomography
    Wang, Jie
    Zhang, Miao
    Pechauer, Alex D.
    Liu, Liang
    Hwang, Thomas S.
    Wilson, David J.
    Li, Dengwang
    Jia, Yali
    [J]. BIOMEDICAL OPTICS EXPRESS, 2016, 7 (04): : 1577 - 1589