A note on "Quasi-analytical solution of two-dimensional Helmholtz equation"

被引:0
|
作者
Smith, Stefan G. Llewellyn [1 ]
机构
[1] UCSD, Jacobs Sch Engn, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
Helmholtz equation; Conformal mapping; Bessel functions; FUNDAMENTAL-SOLUTIONS; EIGENVALUES; SCATTERING; LAPLACIAN;
D O I
10.1016/j.apm.2017.09.049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent paper of Van Hirtum in this journal repeats a number of misconceptions about the use of conformal mappings in solving the two-dimensional Helmholtz equation. These are discussed, as is the fact that the numerical approach presented does not lead to accurate results. In general conformal mapping is not useful in solving Helmholtz's equation. Other, accurate, techniques are briefly reviewed. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:281 / 283
页数:3
相关论文
共 50 条
  • [21] HELMHOLTZ EQUATION WITH ARTIFICIAL BOUNDARY CONDITIONS IN A TWO-DIMENSIONAL WAVEGUIDE
    Mitsoudis, D. A.
    Makridakis, Ch
    Plexousakis, M.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (06) : 4320 - 4344
  • [22] On a topology optimization problem governed by two-dimensional Helmholtz equation
    Jaroslav Haslinger
    Raino A. E. Mäkinen
    [J]. Computational Optimization and Applications, 2015, 62 : 517 - 544
  • [23] On a topology optimization problem governed by two-dimensional Helmholtz equation
    Haslinger, Jaroslav
    Makinen, Raino A. E.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (02) : 517 - 544
  • [24] On the two-dimensional Vlasov-Helmholtz equation with infinite mass
    Caprino, S
    Marchioro, C
    Pulvirenti, M
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) : 791 - 808
  • [25] Investigation of an approximate solution of the integral equation of the exterior Dirichlet boundary value problem for the Helmholtz equation in the two-dimensional space
    Khalilov, Elnur H.
    [J]. VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (82): : 39 - 54
  • [26] Quasi-analytical solution of the design model of three-dimensional arc type well trajectory
    Lu, Gang
    Xi, Weidong
    Lai, Jiangqiang
    [J]. Shiyou Xuebao/Acta Petrolei Sinica, 2020, 41 (12): : 1679 - 1685
  • [28] A quasi-analytical shock solution for general nonlinear progressive waves
    Coulouvrat, Francois
    [J]. WAVE MOTION, 2009, 46 (02) : 97 - 107
  • [29] Approximate analytical solution of two-dimensional space-time fractional diffusion equation
    Pandey, Prashant
    Kumar, Sachin
    Gomez, Francisco
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7194 - 7207
  • [30] Two-dimensional Helmholtz spaces
    Kyrov, VA
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) : 1082 - 1096