共 50 条
Synthesis of a NiMoO4/3D-rGO Nanocomposite via Starch Medium Precipitation Method for Supercapacitor Performance
被引:21
|作者:
Rastabi, Shahrzad Arshadi
[1
]
Mamoory, Rasoul Sarraf
[1
]
Blomquist, Nicklas
[2
]
Phadatare, Manisha
[2
]
Olin, Hakan
[2
]
机构:
[1] Tarbiat Modares Univ, Dept Mat Engn, Tehran 14115111, Iran
[2] Mid Sweden Univ, Dept Nat Sci, S-85170 Sundsvall, Sweden
来源:
关键词:
electrochemical performance;
starch;
porous structure;
NiMoO4;
3D-rGO nanocomposite;
NPs;
REDUCED GRAPHENE;
ELECTROCHEMICAL PERFORMANCE;
NIMOO4;
NANOPARTICLES;
ASSISTED SYNTHESIS;
NI FOAM;
ELECTRODE;
COMPOSITES;
NANORODS;
NANOSHEETS;
NANOWIRES;
D O I:
10.3390/batteries6010005
中图分类号:
O646 [电化学、电解、磁化学];
学科分类号:
081704 ;
摘要:
This paper presents research on the synergistic effects of nickel molybdate and reduced graphene oxide as a nanocomposite for further development of energy storage systems. An enhancement in the electrochemical performance of supercapacitor electrodes occurs by synthesizing highly porous structures and achieving more surface area. In this work, a chemical precipitation technique was used to synthesize the NiMoO4/3D-rGO nanocomposite in a starch media. Starch was used to develop the porosities of the nanostructure. A temperature of 350 degrees C was applied to transform graphene oxide sheets to reduced graphene oxide and remove the starch to obtain the NiMoO4/3D-rGO nanocomposite with porous structure. The X-ray diffraction pattern of the NiMoO4 nano particles indicated a monoclinic structure. Also, the scanning electron microscope observation showed that the NiMoO4 NPs were dispersed across the rGO sheets. The electrochemical results of the NiMoO4/3D-rGO electrode revealed that the incorporation of rGO sheets with NiMoO4 NPs increased the capacity of the nanocomposite. Therefore, a significant increase in the specific capacity of the electrode was observed with the NiMoO4/3D-rGO nanocomposite (450 Cg(-1) or 900 Fg(-1)) when compared with bare NiMoO4 nanoparticles (350 Cg(-1) or 700 Fg(-1)) at the current density of 1 A g(-1). Our findings show that the incorporation of rGO and NiMoO4 NP redox reactions with a porous structure can benefit the future development of supercapacitors.
引用
收藏
页数:12
相关论文