Pseudo-Anosov homeomorphisms and the lower central series of a surface group
被引:2
|
作者:
Malestein, Justin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Math, Chicago, IL 60637 USAUniv Chicago, Dept Math, Chicago, IL 60637 USA
Malestein, Justin
[1
]
机构:
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
来源:
ALGEBRAIC AND GEOMETRIC TOPOLOGY
|
2007年
/
7卷
关键词:
D O I:
10.2140/agt.2007.7.1921
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let Gamma(k) be the lower central series of a surface group Gamma of a compact surface S with one boundary component. A simple question to ponder is whether a mapping class of S can be determined to be pseudo-Anosov given only the data of its action on Gamma/Gamma(k) for some k. In this paper, to each mapping class f which acts trivially on Gamma/Gamma(k+l), we associate an invariant Psi(k)(f) epsilon End(H-1(S, Z)) which is constructed from its action on Gamma/Gamma(k+2). We show that if the characteristic polynomial Of Psi(k)(f) is irreducible over Z, then f must be pseudo-Anosov. Some explicit mapping classes are then shown to be pseudo-Anosov.