Kernel estimation of a partially linear additive model

被引:39
|
作者
Manzan, S
Zerom, D [1 ]
机构
[1] Univ Alberta, Sch Business, Edmonton, AB T6G 2R6, Canada
[2] Univ Amsterdam, CeNDEF, Amsterdam, Netherlands
关键词
additivity; kernel; partially linear additive model; semiparametric efficient;
D O I
10.1016/j.spl.2005.02.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a kernel estimator for the finite-dimensional parameter of a partially linear additive model. Under some regularity conditions, we establish n(1/2)-consistency and asymptotic normality of the estimator. Unlike existing kernel-based estimators: Fan et al. (1998. Ann. Statist. 26, 943-971) and Fan and Li (2003. Statist. Sinica 13, 739-762) our estimator attains the semiparametric efficiency bound of the partially linear additive model under homoscedastic errors. We also show that when the true specification is the partially linear additive model, the proposed estimator is asymptotically more efficient than an estimator that ignores the additive structure. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 322
页数:10
相关论文
共 50 条