additivity;
kernel;
partially linear additive model;
semiparametric efficient;
D O I:
10.1016/j.spl.2005.02.005
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper, we introduce a kernel estimator for the finite-dimensional parameter of a partially linear additive model. Under some regularity conditions, we establish n(1/2)-consistency and asymptotic normality of the estimator. Unlike existing kernel-based estimators: Fan et al. (1998. Ann. Statist. 26, 943-971) and Fan and Li (2003. Statist. Sinica 13, 739-762) our estimator attains the semiparametric efficiency bound of the partially linear additive model under homoscedastic errors. We also show that when the true specification is the partially linear additive model, the proposed estimator is asymptotically more efficient than an estimator that ignores the additive structure. (c) 2005 Elsevier B.V. All rights reserved.
机构:
Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
Zhejiang Gongshang Univ, Collaborat Innovat Ctr Stat Data Engn Technol & Ap, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
Li, Lu
Hao, Ruiting
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
Zhejiang Gongshang Univ, Collaborat Innovat Ctr Stat Data Engn Technol & Ap, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
Hao, Ruiting
Yang, Xiaorong
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
Zhejiang Gongshang Univ, Collaborat Innovat Ctr Stat Data Engn Technol & Ap, Hangzhou 310018, Peoples R ChinaZhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China