ESTIMATION OF MAIZE BIOMASS USING UNMANNED AERIAL VEHICLES

被引:6
|
作者
Calou, Vinicius B. C. [1 ]
Teixeira, Adunias dos S. [2 ]
Moreira, Luis C. J. [3 ]
da Rocha Neto, Odilio C. [3 ]
da Silva, Jose A. [3 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol, Iguatu, Ceara, Brazil
[2] Univ Fed Ceara, Fortaleza, Ceara, Brazil
[3] Inst Fed Educ Ciencia & Tecnol, Limoeiro Do Norte, Ceara, Brazil
来源
ENGENHARIA AGRICOLA | 2019年 / 39卷 / 06期
关键词
precision agriculture; Structure from Motion; unmanned aerial vehicles; Zea mays L; UAV; IMAGERY; RECONSTRUCTION; TEMPERATURE;
D O I
10.1590/1809-4430-Eng.Agric.v39n6p744-752/2019
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Unmanned aerial vehicles (UAVs) are a promising tool for technology development and transfer and for the economic success of the agricultural sector. The objective of this study is to assess the validity of biomass estimation in a commercial maize plantation using aerial images obtained by a UAV. The proposed methodology involved analyzing images acquired in scheduled flights, processing orthophoto (georeferenced image) data, evaluating digital terrain elevation models, and assessing the quality of dense point clouds. Data were collected using two cameras, one with a 16-megapixel flat lens and the other with a 12-megapixel fish-eye lens coupled to a UAV, at two flight altitudes (30 and 60 meters) over hybrid maize (AG1051) crop irrigated by center pivot in the municipality of Limoeiro do Norte, Ceara, Brazil. Crop biomass was estimated in 1 m(2) plots sampled randomly, and data were validated by interpreting aerial images of target areas. The measurements of biomass using UAV-based aerial images were promising. The estimated values were more accurate using the fish-eye lens at 30 m altitude, corresponding to 2.97 kg m(-2), which is very close to the values measured in the field (2.92 kg m(-2)).
引用
收藏
页码:744 / 752
页数:9
相关论文
共 50 条
  • [41] Observing river stages using unmanned aerial vehicles
    Niedzielski, Tomasz
    Witek, Matylda
    Spallek, Waldemar
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (08) : 3193 - 3205
  • [42] Cooperative fire detection using unmanned aerial vehicles
    Merino, L
    Caballero, F
    Martínez-De Dios, JR
    Ollero, A
    2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 1884 - 1889
  • [43] Antenna Diagnostics and Characterization Using Unmanned Aerial Vehicles
    Garcia-Fernandez, Maria
    Alvarez Lopez, Yuri
    Arboleya, Ana
    Gonzalez-Valdes, Bona
    Rodriguez-Vaqueir, Yolanda
    De Cos Gomez, Maria Elena
    Las-Heras Andres, Fernando
    IEEE ACCESS, 2017, 5 : 23563 - 23575
  • [44] VOLUME MEASUREMENTS OF ROCKFALLS USING UNMANNED AERIAL VEHICLES
    Car, Marijan
    Kacunic, Danijela Juric
    Libric, Lovorka
    ROAD AND RAIL INFRASTRUCTURE IV, 2016, : 301 - 307
  • [45] The feasibility of counting songbirds using unmanned aerial vehicles
    Wilson, Andrew M.
    Barr, Janine
    Zagorski, Megan
    AUK, 2017, 134 (02): : 350 - 362
  • [46] Improve Ocean Sensing Using Unmanned Aerial Vehicles
    Donaldson, Thomas Q.
    von Flotow, Andy
    John, Shaju
    Goff, Justin
    Yakimenko, Oleg
    Brodie, Rob
    MARINE TECHNOLOGY SOCIETY JOURNAL, 2023, 57 (04) : 47 - 51
  • [47] Pavement Monitoring Using Unmanned Aerial Vehicles: An Overview
    Peddinti, Pranav R. T.
    Puppala, Harish
    Kim, Byungmin
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2023, 149 (03)
  • [48] RADIATION MONITORING SYSTEM USING UNMANNED AERIAL VEHICLES
    Luley, Jakub
    Cerba, Stefan
    Vrban, Branislav
    Osusky, Filip
    Sluka, Ondrej
    RADIATION PROTECTION DOSIMETRY, 2019, 186 (2-3) : 337 - 341
  • [49] Detecting changes in terrain using unmanned aerial vehicles
    Rahman, ZU
    Hines, GD
    Logan, MJ
    Visual Information Processing XIV, 2005, 5817 : 53 - 63
  • [50] Radiation Monitoring Using Unmanned Aerial Vehicles (UAVs)
    Cerba, Stefan
    Vrban, Branislav
    Luley, Jakub
    Osusky, Filip
    Dudas, Juraj
    ENERGY ECOLOGY ECONOMY 2018, 2018, : 28 - 32