Carrier transport in III-V quantum-dot structures for solar cells or photodetectors

被引:16
|
作者
Wang, Wenqi [1 ]
Wang, Lu [1 ]
Jiang, Yang [1 ]
Ma, Ziguang [1 ]
Sun, Ling [1 ]
Liu, Jie [1 ]
Sun, Qingling [1 ]
Zhao, Bin [1 ]
Wang, Wenxin [1 ]
Liu, Wuming [1 ]
Jia, Haiqiang [1 ]
Chen, Hong [1 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum dots; electronic transport; p-n junctions; photoluminescence; OPTICAL-ABSORPTION; ENERGY RELAXATION; INTERMEDIATE-BAND; PHOTOLUMINESCENCE; EXCITATION; CONVERSION;
D O I
10.1088/1674-1056/25/9/097307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
According to the well-established light-to-electricity conversion theory, resonant excited carriers in the quantum dots will relax to the ground states and cannot escape from the quantum dots to form photocurrent, which have been observed in quantum dots without a p-n junction at an external bias. Here, we experimentally observed more than 88% of the resonantly excited photo carriers escaping from InAs quantum dots embedded in a short-circuited p-n junction to form photocurrent. The phenomenon cannot be explained by thermionic emission, tunneling process, and intermediate-band theories. A new mechanism is suggested that the photo carriers escape directly from the quantum dots to form photocurrent rather than relax to the ground state of quantum dots induced by a p-n junction. The finding is important for understanding the low-dimensional semiconductor physics and applications in solar cells and photodiode detectors.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Silicon-based long-wavelength III-V quantum-dot lasers
    Jiang, Qi
    Lee, Andrew
    Tang, Mingchu
    Seeds, Alwyn
    Liu, Huiyun
    [J]. 2012 INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE AND RELATED MATERIALS (IPRM), 2013, : 88 - 91
  • [22] Recent progress in epitaxial growth of III-V quantum-dot lasers on silicon substrate
    Pan, Shujie
    Cao, Victoria
    Liao, Mengya
    Lu, Ying
    Liu, Zizhuo
    Tang, Mingchu
    Chen, Siming
    Seeds, Alwyn
    Liu, Huiyun
    [J]. JOURNAL OF SEMICONDUCTORS, 2019, 40 (10)
  • [23] Transport characteristics of InAs/GaAs quantum-dot infrared photodetectors
    Lin, SY
    Tsai, YJ
    Lee, SC
    [J]. APPLIED PHYSICS LETTERS, 2003, 83 (04) : 752 - 754
  • [24] Carrier transport in quantum dot structures
    Shulika, AV
    Lysak, VV
    [J]. LFNM'2002: PROCEEDINGS OF THE 4TH INTERNATIONAL WORKSHOP ON LASER AND FIBER-OPTICAL NETWORKS MODELING, 2002, : 178 - 180
  • [25] Quantum-dot detectors - Quantum-dot IR photodetectors get 'hotter'
    Razeghi, Manijeh
    [J]. LASER FOCUS WORLD, 2007, 43 (12): : 75 - 76
  • [26] III-V solar cells
    Connolly, James P.
    Mencaraglia, Denis
    [J]. RSC Energy and Environment Series, 2015, 2015-January (12): : 209 - 246
  • [27] Quantum wells and superlattices for III-V photovoltaics and photodetectors
    Lumb, Matthew P.
    Vurgaftman, Igor
    Affouda, Chaffra A.
    Meyer, Jerry R.
    Aifer, Edward H.
    Walters, Robert J.
    [J]. NEXT GENERATION (NANO) PHOTONIC AND CELL TECHNOLOGIES FOR SOLAR ENERGY CONVERSION III, 2012, 8471
  • [28] Quantum-dot infrared photodetector with lateral carrier transport
    Chu, L
    Zrenner, A
    Bichler, M
    Abstreiter, G
    [J]. APPLIED PHYSICS LETTERS, 2001, 79 (14) : 2249 - 2251
  • [29] Highly Efficient Multiple-Layer CdS Quantum Dot Sensitized III-V Solar Cells
    Lin, Chien-Chung
    Han, Hau-Vei
    Chen, Hsin-Chu
    Chen, Kuo-Ju
    Tsai, Yu-Lin
    Lin, Wein-Yi
    Kuo, Hao-Chung
    Yu, Peichen
    [J]. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (02) : 1051 - 1063
  • [30] Gallium nanoparticles as antireflection structures on III-V solar cells
    Catalan-Gomez, S.
    Castellano, E. Martinez
    Schwarz, M.
    Bajo, M. Montes
    Vargas, L. Dorado
    Gonzalo, A.
    Redondo-Cubero, A.
    Carro, A. Gallego
    Hierro, A.
    Ulloa, J. M.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 265