A Satellite-Based Model for Estimating Latent Heat Flux From Urban Vegetation

被引:11
|
作者
Smith, Ian A. [1 ]
Winbourne, Joy B. [1 ,2 ]
Tieskens, Koen F. [3 ]
Jones, Taylor S. [1 ]
Bromley, Fern L. [1 ]
Li, Dan [1 ]
Hutyra, Lucy R. [1 ]
机构
[1] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[2] Univ Massachusetts, Dept Earth Environm & Atmospher Sci, Lowell, MA USA
[3] Boston Univ, Dept Environm Hlth, Boston, MA 02215 USA
来源
基金
美国国家科学基金会;
关键词
latent heat flux; evapotranspiration; urban heat island; greenspace; vegetation model; ATMOSPHERIC NITROGEN INPUTS; LOS-ANGELES; LAND-USE; CARBON; TEMPERATURE; TREE; FOREST; ISLAND; VARIABILITY; BOSTON;
D O I
10.3389/fevo.2021.695995
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-m spatial resolution and hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of extreme heat events.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Satellite-only latent heat flux estimation
    Mallick, Kaniska
    Jarvis, Andrew
    [J]. REMOTE SENSING AND HYDROLOGY, 2012, 352 : 115 - 119
  • [32] A technique for estimating dry deposition velocities based on similarity with latent heat flux
    Pleim, JE
    Finkelstein, PL
    Clarke, JF
    Ellestad, TG
    [J]. ATMOSPHERIC ENVIRONMENT, 1999, 33 (14) : 2257 - 2268
  • [33] The Naval Research Laboratory Ocean Surface Flux (NFLUX) System: Satellite-Based Turbulent Heat Flux Products
    May, Jackie C.
    Rowley, Clark
    Van de Voorde, Neil
    [J]. JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2016, 55 (05) : 1221 - 1237
  • [34] Development of machine learning models for estimating wheat biophysical variables using satellite-based vegetation indices
    Jamali, Mohsen
    Bakhshandeh, Esmaeil
    Yeganeh, Bijan
    Ozdogan, Mutlu
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (01) : 498 - 513
  • [35] UNCOUPLED MULTI-LAYER MODEL FOR THE TRANSFER OF SENSIBLE AND LATENT-HEAT FLUX DENSITIES FROM VEGETATION
    CHEN, J
    [J]. BOUNDARY-LAYER METEOROLOGY, 1984, 28 (3-4) : 213 - 225
  • [36] A satellite-based hybrid algorithm to determine the Priestley-Taylor parameter for global terrestrial latent heat flux estimation across multiple biomes
    Yao, Yunjun
    Liang, Shunlin
    Li, Xianglan
    Chen, Jiquan
    Wang, Kaicun
    Jia, Kun
    Cheng, Jie
    Jiang, Bo
    Fisher, Joshua B.
    Mu, Qiaozhen
    Gruenwald, Thomas
    Bernhofer, Christian
    Roupsard, Olivier
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 165 : 216 - 233
  • [37] Vegetation Burned Areas Derived from Multiple Satellite-based Active Fires
    Zhang, Xiaoyang
    Kondragunta, Shobha
    [J]. REMOTE SENSING OF FIRE: SCIENCE AND APPLICATION, 2008, 7089
  • [38] Estimating Denominators Satellite-Based Population Estimates at a Fine Spatial Resolution in a European Urban Area
    Viel, Jean-Francois
    Tran, Annelise
    [J]. EPIDEMIOLOGY, 2009, 20 (02) : 214 - 222
  • [39] Comparisons of satellite-based models for estimating evapotranspiration fluxes
    Consoli, S.
    Vanella, D.
    [J]. JOURNAL OF HYDROLOGY, 2014, 513 : 475 - 489
  • [40] Calculation and Monthly Characteristics of Satellite-based Heat Flux Over the Ocean Around the Korea Peninsula
    Kim, Jaemin
    Lee, Yun Gon
    Park, Jun Dong
    Sohn, Eun Ha
    Jang, Jae-Dong
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2018, 34 (03) : 519 - 533