Statistical mechanics of helical wormlike chain model

被引:9
|
作者
Liu, Ya [1 ]
Perez, Toni [1 ]
Li, Wei [1 ]
Gunton, J. D. [1 ]
Green, Amanda [2 ]
机构
[1] Lehigh Univ, Dept Phys, Bethlehem, PA 18015 USA
[2] Bucknell Univ, Dept Phys, Lewisburg, PA 17837 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2011年 / 134卷 / 06期
基金
美国国家科学基金会;
关键词
TWISTING ELASTICITY; DYNAMICS; DNA; FILAMENTS; POLYMERS;
D O I
10.1063/1.3548885
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate the statistical mechanics of polymers with bending and torsional elasticity described by the helical wormlike model. Noticing that the energy function is factorizable, we provide a numerical method to solve the model using a transfer matrix formulation. The tangent-tangent and binormal-binormal correlation functions have been calculated and displayed rich profiles which are sensitive to the combination of the temperature and the equilibrium torsion. Their behaviors indicate that there is no finite temperature Lifshitz point between the disordered and helical phases. The asymptotic behavior at low temperature has been investigated theoretically and the predictions fit the numerical results very well. Our analysis could be used to understand the statics of dsDNA and other chiral polymers. (C) 2011 American Institute of Physics. [doi:10.1063/1.3548885]
引用
收藏
页数:6
相关论文
共 50 条
  • [31] STATISTICAL MECHANICS OF WORMLIKE CHAINS .2. EXCLUDED VOLUME EFFECTS
    YAMAKAWA, H
    STOCKMAYER, WH
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (07): : 2843 - +
  • [32] Statistical mechanics of double-helical polymers
    De Col, A
    Liverpool, TB
    [J]. PHYSICAL REVIEW E, 2004, 69 (06): : 5
  • [33] Statistical Evidence for a Helical Nascent Chain
    Cruzeiro, Leonor
    Gill, Andrew C.
    Eilbeck, J. Chris
    [J]. BIOMOLECULES, 2021, 11 (03) : 1 - 16
  • [34] BROKEN WORMLIKE CHAIN MODEL OF SEMIFLEXIBLE POLYMERS
    MANSFIELD, ML
    [J]. MACROMOLECULES, 1986, 19 (03) : 854 - 859
  • [35] The applications of the wormlike chain model on polymer physics
    Ying, Jiang
    Jeff, Chen Z. Y.
    [J]. ACTA PHYSICA SINICA, 2016, 65 (17)
  • [36] The statistical mechanics of a concatenated polymer chain
    Brereton, MG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (25): : 5131 - 5145
  • [37] STATISTICAL-MECHANICS OF A MAGNETIC CHAIN
    SAMALAM, VK
    KUMAR, P
    [J]. PHYSICAL REVIEW B, 1982, 26 (09): : 5146 - 5152
  • [38] Statistical Properties of a Slit-Confined Wormlike Chain of Finite Length
    Teng, Yue
    Andersen, Nigel T.
    Chen, Jeff Z. Y.
    [J]. MACROMOLECULES, 2021, 54 (17) : 8008 - 8023
  • [39] STATISTICAL-MECHANICS OF HELICAL WORMLIKE CHAINS .16. EXCLUDED-VOLUME EFFECT ON THE MEAN-SQUARE ELECTRIC-DIPOLE MOMENT
    YOSHIZAKI, T
    YAMAKAWA, H
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (05): : 4207 - 4213
  • [40] Elastic traits of the extensible discrete wormlike chain model
    Fiasconaro, Alessandro
    Falo, Fernando
    [J]. PHYSICAL REVIEW E, 2023, 107 (02)