A note on Bayesian nonparametric priors derived from exponentially tilted Poisson-Kingman models

被引:4
|
作者
Cerquetti, Annalisa [1 ]
机构
[1] Univ L Bocconi, Ist Melodi Quantitativi, I-20135 Milan, Italy
关键词
exchangeable random partitions; exponential tilting; inverse Gaussian density; random probability measures; tempered stable laws;
D O I
10.1016/j.spl.2007.04.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive the class of normalized generalized Gamma processes from Pitman's Poisson-Kingman models [Pitman, J., 2003. Poisson-Kingman partitions. In: Goldstein, D.R., (Ed.), Science and Statistics: A Festschrift for Terry Speed, IMS Lecture Notes-Monograph Series, vol. 40. Institute of Mathematical Statistics, Hayward, CA, pp. 1-34.] with tempered alpha-stable mixing distribution. Relying on this construction it can be shown that in Bayesian nonparametrics, results on quantities of statistical interest under those priors, like the analogous of the Blackwell-MacQueen prediction rules or the distribution of the number of distinct elements observed in a sample, arise as immediate consequences of Pitman's results. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1705 / 1711
页数:7
相关论文
共 39 条
  • [1] A hybrid sampler for Poisson-Kingman mixture models
    Lomeli, Maria
    Favaro, Stefano
    Teh, Yee Whye
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [2] Slice Sampling σ-Stable Poisson-Kingman Mixture Models
    Favaro, Stefano
    Walker, Stephen G.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (04) : 830 - 847
  • [3] On a class of -stable Poisson-Kingman models and an effective marginalized sampler
    Favaro, S.
    Lomeli, M.
    Teh, Y. W.
    [J]. STATISTICS AND COMPUTING, 2015, 25 (01) : 67 - 78
  • [4] On the stick-breaking representation of σ-stable Poisson-Kingman models
    Favaro, Stefano
    Lomeli, Maria
    Nipoti, Bernardo
    Teh, Yee Whye
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1063 - 1085
  • [5] Shrinkage Priors for Nonparametric Bayesian Prediction of Nonhomogeneous Poisson Processes
    Komaki, Fumiyasu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5305 - 5317
  • [6] Survival Regression Models With Dependent Bayesian Nonparametric Priors
    Riva-Palacio, Alan
    Leisen, Fabrizio
    Griffin, Jim
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1530 - 1539
  • [7] A Survey of Non-Exchangeable Priors for Bayesian Nonparametric Models
    Foti, Nicholas J.
    Williamson, Sinead A.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 359 - 371
  • [8] A NOTE ON "BAYESIAN NONPARAMETRIC ESTIMATORS DERIVED FROM CONDITIONAL GIBBS STRUCTURES"
    Lijoi, Antonio
    Prunster, Igor
    Walker, Stephen G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2014, 24 (01): : 447 - +
  • [9] Nonparametric Priors for Ordinal Bayesian Social Science Models: Specification and Estimation
    Gill, Jeff
    Casella, George
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (486) : 453 - 464
  • [10] Learning stick-figure models using nonparametric Bayesian priors over trees
    Meeds, Edward W.
    Ross, David A.
    Zemel, Richard S.
    Roweis, Sam T.
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 1689 - 1696