Spatio-Temporal and Events Based Analysis of Topic Popularity in Twitter

被引:40
|
作者
Ardon, Sebastien [2 ]
Bagchi, Amitabha [1 ]
Mahanti, Anirban [2 ]
Ruhela, Amit [1 ,3 ]
Seth, Aaditeshwar [1 ]
Tripathy, Rudra Mohan [1 ]
Triukose, Sipat [2 ]
机构
[1] IIT Delhi, Delhi, India
[2] NICTA, Sydney, NSW, Australia
[3] C DOT Delhi, Delhi, India
关键词
Online Social Network; Topics; Diffusion; Events;
D O I
10.1145/2505515.2505525
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present the first comprehensive characterization of the diffusion of ideas on Twitter, studying more than 5.96 million topics that include both popular and less popular topics. On a data set containing approximately 10 million users and a comprehensive scraping of 196 million tweets, we perform a rigorous temporal and spatial analysis, investigating the time-evolving properties of the subgraphs formed by the users discussing each topic. We focus on two different notions of the spatial: the network topology formed by follower-following links on Twitter, and the geospatial location of the users. We investigate the effect of initiators on the popularity of topics and find that users with a high number of followers have a strong impact on topic popularity. We deduce that topics become popular when disjoint clusters of users discussing them begin to merge and form one giant component that grows to cover a significant fraction of the network. Our geospatial analysis shows that highly popular topics are those that cross regional boundaries aggressively.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 50 条
  • [21] Twitter: temporal events analysis
    Amati, Giambattista
    Angelini, Simone
    Gambosi, Giorgio
    Pasquini, Daniele
    Rossi, Gianluca
    Vocca, Paola
    [J]. GOODTECHS '18: PROCEEDINGS OF THE 4TH EAI INTERNATIONAL CONFERENCE ON SMART OBJECTS AND TECHNOLOGIES FOR SOCIAL GOOD (GOODTECHS), 2018, : 298 - 303
  • [22] An adaptive method for clustering spatio-temporal events
    Li, Zhilin
    Liu, Qiliang
    Tang, Jianbo
    Deng, Min
    [J]. TRANSACTIONS IN GIS, 2018, 22 (01) : 323 - 347
  • [23] Spatio-temporal Graphical Models for Extreme Events
    Yu, Hang
    Zhang, Liaofan
    Dauwels, Justin
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2032 - 2036
  • [24] Towards spatio-temporal crime events prediction
    Alghamdi, Jawaher
    Al-Dala'in, Thair
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 18721 - 18737
  • [25] Spatio-temporal visualization of battlefield entities and events
    Fong, Qiyue
    Ng, Foo Meng
    Huang, Zhiyong
    [J]. ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS, 2006, 4035 : 622 - 629
  • [26] Towards spatio-temporal crime events prediction
    Jawaher Alghamdi
    Thair Al-Dala’in
    [J]. Multimedia Tools and Applications, 2024, 83 : 18721 - 18737
  • [27] Modelling underreported spatio-temporal crime events
    Riascos Villegas, Alvaro J.
    Nungo, Jose Sebastian
    Gomez Tobon, Lucas
    Dulce Rubio, Mateo
    Gomez, Francisco
    [J]. PLOS ONE, 2023, 18 (07):
  • [28] Spatio-temporal analysis of fire events in India: implications for environmental conservation
    Vadrevu, Krishna Prasad
    Badarinath, K. V. S.
    Eaturu, Anuradha
    [J]. JOURNAL OF ENVIRONMENTAL PLANNING AND MANAGEMENT, 2008, 51 (06) : 817 - 832
  • [29] Spatio-temporal statistical methods for analysis of hydrological events and related hazards
    Varouchakis, Emmanouil A.
    Hristopulos, Dionissios T.
    Heuvelink, Gerard B. M.
    Perez, Gerald A. Corzo
    [J]. SPATIAL STATISTICS, 2019, 34
  • [30] Spatio-Temporal Multiple Geo-Location Identification on Twitter
    Ghoorchian, Kambiz
    Girdzijauskas, Sarunas
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3412 - 3421