Density-matrix renormalization-group algorithms with nonorthogonal orbitals and non-Hermitian operators, and applications to polyenes

被引:58
|
作者
Chan, GKL [1 ]
Van Voorhis, T
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 122卷 / 20期
关键词
D O I
10.1063/1.1899124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We describe the theory and implementation of two extensions to the density-matrix renormalization-group (DMRG) algorithm in quantum chemistry: (i) to work with an underlying nonorthogonal one-particle basis (using a biorthogonal formulation) and (ii) to use non-Hermitian and complex operators and complex wave functions, which occur naturally in biorthogonal formulations. Using these developments, we carry out ground-state calculations on ethene, butadiene, and hexatriene, in a polarized atomic-orbital basis. The description of correlation in these systems using a localized nonorthogonal basis is improved over molecular-orbital DMRG calculations, and comparable to or better than coupled-cluster calculations, although we encountered numerical problems associated with non-Hermiticity. We believe that the non-Hermitian DMRG algorithm may further become useful in conjunction with other non-Hermitian Hamiltonians, for example, similarity-transformed coupled-cluster Hamiltonians. (c) 2005 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Density-matrix renormalization-group simulation of the SU(3) antiferromagnetic Heisenberg model
    Aguado, M.
    Asorey, M.
    Ercolessi, E.
    Ortolani, F.
    Pasini, S.
    PHYSICAL REVIEW B, 2009, 79 (01):
  • [32] On the surface critical behaviour in Ising strips: density-matrix renormalization-group study
    Drzewinski, A
    Maciolek, A
    Szota, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (22) : 5069 - 5078
  • [33] Orbital optimization in the density matrix renormalization group, with applications to polyenes and ß-carotene
    Ghosh, Debashree
    Hachmann, Johannes
    Yanai, Takeshi
    Chan, Garnet Kin-Lic
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (14):
  • [34] Two-dimensional infinite-system density-matrix renormalization-group algorithm
    Henelius, P
    PHYSICAL REVIEW B, 1999, 60 (13): : 9561 - 9565
  • [35] Near-critical fluids and Ising films: Density-matrix renormalization-group study
    Maciolek, A.
    Drzewinski, A.
    Evans, R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 II): : 1 - 056137
  • [36] Stiffening of fluid membranes due to thermal undulations: Density-matrix renormalization-group study
    Nishiyama, Y
    PHYSICAL REVIEW E, 2002, 66 (06): : 8
  • [37] Density-matrix renormalization-group study of excitons in dendrimers -: art. no. 155116
    Martín-Delgado, MA
    Rodriguez-Laguna, J
    Sierra, G
    PHYSICAL REVIEW B, 2002, 65 (15) : 1 - 11
  • [38] Density-matrix renormalization-group analysis of quantum critical points: Quantum spin chains
    Tsai, SW
    Marston, JB
    PHYSICAL REVIEW B, 2000, 62 (09) : 5546 - 5557
  • [39] Quantum Ising model in a transverse random field: A density-matrix renormalization-group analysis
    Juozapavicius, A
    Caprara, S
    Rosengren, A
    PHYSICAL REVIEW B, 1997, 56 (17): : 11097 - 11101
  • [40] DENSITY-MATRIX RENORMALIZATION-GROUP METHOD FOR 2D CLASSICAL-MODELS
    NISHINO, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (10) : 3598 - 3601