Dynamics of a modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge

被引:46
|
作者
Yue, Qin [1 ]
机构
[1] West Anhui Univ, Coll Finance & Math, Liuan 237000, Anhui, Peoples R China
来源
SPRINGERPLUS | 2016年 / 5卷
关键词
Leslie-Gower; Equilibrium; Global attractivity; Iterative; Refuge; GLOBAL STABILITY; QUALITATIVE-ANALYSIS; SYSTEM;
D O I
10.1186/s40064-016-2087-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a modified Leslie-Gower predator-prey model with Holling-type II schemes and a prey refuge. The structure of equilibria and their linearized stability is investigated. By using the iterative technique and further precise analysis, sufficient conditions on the global attractivity of a positive equilibrium are obtained. Our results not only supplement but also improve some existing ones. Numerical simulations show the feasibility of our results.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Impulsive perturbations of a predator-prey system with modified Leslie-Gower and Holling type II schemes
    Zhao Z.
    Yang L.
    Chen L.
    Journal of Applied Mathematics and Computing, 2011, 35 (1-2) : 119 - 134
  • [42] On a Leslie-Gower predator-prey model incorporating a prey refuge
    Chen, Fengde
    Chen, Liujuan
    Xie, Xiangdong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) : 2905 - 2908
  • [43] Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge
    Guan, Xiaona
    Wang, Weiming
    Cai, Yongli
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2385 - 2395
  • [44] Global attractivity of positive periodic solution for a predator-prey model with modified Leslie-Gower Holling-type II schemes and a deviating argument
    Wang, Kai
    Zhu, Yanling
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2014, 7 (06)
  • [45] Stability of a diffusive predator-prey model with modified Leslie-Gower and Holling-type II schemes and time-delay in two dimensions
    Nindjin, Aka Fulgence
    Tia, Kesse Thiban
    Okou, Hypolithe
    Tetchi, Albin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [46] Global stability for a nonautonomous reaction-diffusion predator-prey model with modified Leslie-Gower Holling-II schemes and a prey refuge
    Luo, Yantao
    Zhang, Long
    Teng, Zhidong
    Zheng, Tingting
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [47] Limit cycle and numerical similations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type II schemes
    Yafia, Radouane
    El Adnani, Fatiha
    Alaoui, Hamad Talibi
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 2055 - 2067
  • [48] Qualitative analysis of a modified Leslie-Gower and Holling-type II predator-prey model with state dependent impulsive effects
    Nie, Linfei
    Teng, Zhidong
    Hu, Lin
    Peng, Jigen
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (03) : 1364 - 1373
  • [49] A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge
    Sharma, Swarnali
    Samanta, G. P.
    CHAOS SOLITONS & FRACTALS, 2015, 70 : 69 - 84
  • [50] Persistence and extinction of a stochastic predator–prey model with modified Leslie–Gower and Holling-type II schemes
    Dengxia Zhou
    Meng Liu
    Zhijun Liu
    Advances in Difference Equations, 2020