On Topological Properties of Min-Max Functions

被引:1
|
作者
Dorsch, Dominik [1 ]
Jongen, Hubertus Th. [1 ]
Shikhman, Vladimir [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Math C, D-52056 Aachen, Germany
关键词
Min-max functions; Lipschitz manifold; Semi-infinite programming; GSIP; Symmetric Mangasarian-Fromovitz Constraint Qualification; Closure feasible set; FEASIBLE SET; OPTIMIZATION;
D O I
10.1007/s11228-010-0170-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the topological structure of the upper-level set M (max) given by a min-max function phi. It is motivated by recent progress in Generalized Semi-Infinite Programming (GSIP). Generically, M (max) is proven to be the topological closure of the GSIP feasible set (see Guerra-Vazquez et al. 2009; Gunzel et al., Cent Eur J Oper Res 15(3):271-280, 2007). We formulate two assumptions (Compactness Condition CC and Sym-MFCQ) which imply that M (max) is a Lipschitz manifold (with boundary). The Compactness Condition is shown to be stable under C (0)-perturbations of the defining functions of phi. Sym-MFCQ can be seen as a constraint qualification in terms of Clarke's subdifferential of the min-max function phi. Moreover, Sym-MFCQ is proven to be generic and stable under C (1)-perturbations of the defining functions which fulfill the Compactness Condition. Finally we apply our results to GSIP and conclude that generically the closure of the GSIP feasible set is a Lipschitz manifold (with boundary).
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [31] John disks, the Apollonian metric, and min-max properties
    Huang, M.
    Ponnusamy, S.
    Wang, X.
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2010, 120 (01): : 83 - 96
  • [32] Min-max communities in graphs: Complexity and computational properties
    Di Ianni, Miriam
    Gambosi, Giorgio
    Rossi, Gianluca
    Vocca, Paola
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 613 : 94 - 114
  • [33] On min-max cycle bases
    Galbiati, G
    [J]. ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2001, 2223 : 116 - 123
  • [34] A MIN-MAX THEOREM ON POTENTIALS
    KAUFMAN, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 319 (08): : 799 - 800
  • [35] A min-max theorem on tournaments
    Chen, Xujin
    Hu, Xiaodong
    Zang, Wenan
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (03) : 923 - 937
  • [36] Min-max multiway cut
    Svitkina, Z
    Tardos, É
    [J]. APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 207 - 218
  • [37] SYNTHESIS OF MIN-MAX STRATEGIES
    GUTMAN, S
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (04) : 515 - 523
  • [38] MORE ON MIN-MAX ALLOCATION
    PORTEUS, EL
    YORMARK, JS
    [J]. MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09): : 502 - 507
  • [39] MIN-MAX INTERVAL CALCULUS
    JAHN, KU
    [J]. MATHEMATISCHE NACHRICHTEN, 1976, 71 : 267 - 272
  • [40] Dynamic min-max problems
    Schwiegelshohn, U
    Thiele, L
    [J]. DISCRETE EVENT DYNAMIC SYSTEMS-THEORY AND APPLICATIONS, 1999, 9 (02): : 111 - 134