Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wide-Temperature Lithium-Ion Batteries

被引:59
|
作者
Liu, Gang [1 ,2 ]
Cao, Zhen [3 ]
Wang, Peng [4 ]
Ma, Zheng [1 ]
Zou, Yeguo [1 ,2 ]
Sun, Qujiang [1 ]
Cheng, Haoran [1 ,2 ]
Cavallo, Luigi [3 ]
Li, Shiyou [4 ]
Li, Qian [1 ]
Ming, Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Rare Earth Resource Utilizat, Changchun Inst Appl Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
[4] Lanzhou Univ Technol, Sch Petrochem Technol, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte solvation structure; fast charging; lithium-ion batteries; solid electrolyte interfaces; wide-temperature; LI-ION; IN-SITU; CYCLING STABILITY; LONG-LIFE; GRAPHITE; INTERPHASE; ANODES; METAL; SEI; PERFORMANCE;
D O I
10.1002/advs.202201893
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineering the solid electrolyte interphase (SEI) that forms on the electrode is crucial for achieving high performance in metal-ion batteries. However, the mechanism of SEI formation resulting from electrolyte decomposition is not fully understood at the molecular scale. Herein, a new strategy of switching electrolyte to tune SEI properties is presented, by which a unique and thinner SEI can be pre-formed on the graphite electrode first in an ether-based electrolyte, and then the as-designed graphite electrode can demonstrate extremely high-rate capabilities in a carbonate-based electrolyte, enabling the design of fast-charging and wide-temperature lithium-ion batteries (e.g., graphite | LiNi0.6Co0.2Mn0.2O2 (NCM622)). A molecular interfacial model involving the conformations and electrochemical stabilities of the Li+-solvent-anion complex is presented to elucidate the differences in SEI formation between ether-based and carbonate-based electrolytes, then interpreting the reason for the obtained higher rate performances. This innovative concept combines the advantages of different electrolytes into one battery system. It is believed that the switching strategy and understanding of the SEI formation mechanism opens a new avenue to design SEI, which is universal for pursuing more versatile battery systems with greater stability.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] A low-temperature electrolyte for lithium-ion batteries
    Li, Shiyou
    Li, Xiaopeng
    Liu, Jinliang
    Shang, Zhichao
    Cui, Xiaoling
    IONICS, 2015, 21 (04) : 901 - 907
  • [42] A low-temperature electrolyte for lithium-ion batteries
    Shiyou Li
    Xiaopeng Li
    Jinliang Liu
    Zhichao Shang
    Xiaoling Cui
    Ionics, 2015, 21 : 901 - 907
  • [43] Electrolyte tailoring and interfacial engineering for safe and high-temperature lithium-ion batteries
    Shi, Chenyang
    Li, Zhengguang
    Wang, Mengran
    Hong, Shu
    Hong, Bo
    Fu, Yaxuan
    Liu, Die
    Tan, Rui
    Wang, Pingshan
    Lai, Yanqing
    ENERGY & ENVIRONMENTAL SCIENCE, 2025, 18 (07) : 3248 - 3258
  • [44] A medium/low concentration localized electrolyte for safe and fast-charging lithium-ion batteries
    Zhou, Chengtian
    Guo, Yiming
    Chen, Bowen
    Sarkar, Subhajit
    Thangadurai, Venkataraman
    ELECTROCHIMICA ACTA, 2023, 461
  • [45] Unlocking fast-charging capabilities of lithium-ion batteries through liquid electrolyte engineering
    Song, Chaeeun
    Han, Seung Hee
    Moon, Hyeongyu
    Choi, Nam-Soon
    ECOMAT, 2024, 6 (07)
  • [46] A Biocompatible Deep Eutectic Electrolyte Enables Ultra-Fast Charging in Lithium-Ion Batteries
    Ren, Xiaoyan
    Dou, Renju
    Wang, Qin
    Hu, Kaixin
    Su, Kaihua
    Liu, Chen
    Lu, Lehui
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [47] Enabling 4C Fast Charging of Lithium-Ion Batteries by Coating Graphite with a Solid-State Electrolyte
    Kazyak, Eric
    Chen, Kuan-Hung
    Chen, Yuxin
    Cho, Tae H.
    Dasgupta, Neil P.
    ADVANCED ENERGY MATERIALS, 2022, 12 (01)
  • [48] Mechanical stresses at the cathode–electrolyte interface in lithium-ion batteries
    Sangwook Kim
    Hsiao-Ying Shadow Huang
    Journal of Materials Research, 2016, 31 : 3506 - 3512
  • [49] Multi-Scale Modeling of Solid Electrolyte Interface Formation in Lithium-Ion Batteries
    Roeder, Fridolin
    Braatz, Richard D.
    Krewer, Ulrike
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2016, 38A : 157 - 162
  • [50] Interfacial Evolution of the Solid Electrolyte Interphase and Lithium Deposition in Graphdiyne-Based Lithium-Ion Batteries
    Wan, Jing
    Zuo, Zicheng
    Shen, Zhen-Zhen
    Chen, Wan-Ping
    Liu, Gui-Xian
    Hu, Xin-Cheng
    Song, Yue-Xian
    Xin, Sen
    Guo, Yu-Guo
    Wen, Rui
    Li, Yuliang
    Wan, Li-Jun
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (21) : 9354 - 9362