A Higher-order interactive hidden Markov model and its applications

被引:2
|
作者
Zhu, Dong-Mei [1 ]
Ching, Wai-Ki [2 ]
Elliott, Robert J. [3 ]
Siu, Tak-Kuen [4 ]
Zhang, Lianmin [5 ]
机构
[1] Southeast Univ, Sch Econ & Management, Nanjing, Jiangsu, Peoples R China
[2] Univ Hong Kong, Dept Math, Adv Modeling & Appl Comp Lab, Pokfulam Rd, Hong Kong, Hong Kong, Peoples R China
[3] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[4] Macquarie Univ, Fac Business & Econ, Dept Appl Finance & Actuarial Studies, Sydney, NSW 2109, Australia
[5] Nanjing Univ, Sch Management & Engn, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Interactive hidden Markov model; Hidden Markov model; Feedback effect; Stochastic difference equations; NONNEGATIVE MATRIX FACTORIZATION; QUEUING-NETWORKS; RISK;
D O I
10.1007/s00291-017-0484-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a higher-order interactive hidden Markov model, which incorporates both the feedback effects of observable states on hidden states and their mutual long-term dependence. The key idea of this model is to assume the probability laws governing both the observable and hidden states can be written as a pair of higher-order stochastic difference equations. We also present an efficient procedure, a heuristic algorithm, to estimate the hidden states of the chain and the model parameters. Real applications in SSE Composite Index data and default data are given to demonstrate the effectiveness of our proposed model and corresponding estimation method.
引用
收藏
页码:1055 / 1069
页数:15
相关论文
共 50 条
  • [31] Higher-order neck analysis of harmonic maps and its applications
    Hao Yin
    [J]. Annals of Global Analysis and Geometry, 2022, 62 : 457 - 477
  • [32] A higher-order Knuth-Bendix procedure and its applications
    Kusakari, Keiichirou
    Chiba, Yuki
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2007, E90D (04) : 707 - 715
  • [33] Higher-order neck analysis of harmonic maps and its applications
    Yin, Hao
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (02) : 457 - 477
  • [34] Higher-order tangent derivative and its applications to sensitivity analysis
    Nguyen Le Hoang Anh
    Nguyen Manh Truong Giang
    Nguyen Vy Thong
    [J]. Optimization Letters, 2022, 16 : 1701 - 1724
  • [35] Nonparametric Higher-Order Learning for Interactive Segmentation
    Kim, Tae Hoon
    Lee, Kyoung Mu
    Lee, Sang Uk
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 3201 - 3208
  • [36] Estimating the order of a hidden Markov model
    MacKay, RJ
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2002, 30 (04): : 573 - 589
  • [37] Hidden Markov model of order n
    Sharma, Kal Renganathan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U533 - U533
  • [38] A C-eigenvalue problem for tensors with applications to higher-order multivariate Markov chains
    Li, Wen
    Ke, Rihuan
    Ching, Wai-Ki
    Ng, Michael K.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (03) : 1008 - 1025
  • [39] A higher-order Skyrme model
    Sven Bjarke Gudnason
    Muneto Nitta
    [J]. Journal of High Energy Physics, 2017
  • [40] Higher-Order Model Checking
    Ong, C. -H. Luke
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2012, (77): : 13 - 13