ContextNet: Deep learning for Star Galaxy Classification

被引:0
|
作者
Kennamer, Noble [1 ]
Kirkby, David [2 ]
Ihler, Alex [1 ]
Sanchez, Javier [2 ]
机构
[1] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a framework to compose artificial neural networks in cases where the data cannot be treated as independent events, our particular motivation is star galaxy classification for ground based optical surveys. Due to a turbulent atmosphere and imperfect instruments, a single image of an astronomical object is not enough to definitively classify it as a star or galaxy. Instead the context of the surrounding objects imaged at the same time need to be considered in order to make an optimal classification. The model we present is divided into three distinct ANNs: one designed to capture local features about each object, the second to compare these features across all objects in an image, and the third to make a final prediction for each object based on the local and compared features. By exploiting the ability to replicate the weights of an ANN, the model can handle an arbitrary and variable number of individual objects embedded in a larger exposure. We train and test our model on simulations of a large up and coming ground based survey, the Large Synoptic Survey Telescope (LSST) and compare to the state of the art approach, showing improved overall performance as well as better performance for a specific class of objects that are important for the LSST.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] STAR-GALAXY CLASSIFICATION USING MACHINE LEARNING ALGORITHMS AND DEEP LEARNING
    Savyanavar, Amit Sadanand
    Mhala, Nikhil
    Sutar, Shiv H.
    [J]. INTERNATIONAL JOURNAL ON INFORMATION TECHNOLOGIES AND SECURITY, 2023, 15 (02): : 87 - 96
  • [2] Scientific preparation for CSST: classification of galaxy and nebula/star cluster based on deep learning
    Zhang, Yuquan
    Cao, Zhong
    Wang, Feng
    Lam, Man, I
    Deng, Hui
    Mei, Ying
    Tan, Lei
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 11935 - 11944
  • [3] A hybrid ensemble learning approach to star-galaxy classification
    Kim, Edward J.
    Brunner, Robert J.
    Kind, Matias Carrasco
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 453 (01) : 507 - 521
  • [4] Star-galaxy classification using deep convolutional neural networks
    Kim, Edward J.
    Brunner, Robert J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 464 (04) : 4463 - 4475
  • [5] A Lightweight Deep Learning Framework for Galaxy Morphology Classification
    Donglin Wu
    Jinqu Zhang
    Xiangru Li
    Hui Li
    [J]. Research in Astronomy and Astrophysics, 2022, 22 (11) : 124 - 133
  • [6] Bars formed in galaxy merging and their classification with deep learning
    Cavanagh, M. K.
    Bekki, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 641
  • [7] Galaxy classification: deep learning on the OTELO and COSMOS databases
    de Diego, Jose A.
    Nadolny, Jakub
    Bongiovanni, Angel
    Cepa, Jordi
    Povic, Mirjana
    Perez Garcia, Ana Maria
    Padilla Torres, Carmen P.
    Lara-Lopez, Maritza A.
    Cervino, Miguel
    Perez Martinez, Ricardo
    Alfaro, Emilio J.
    Castaneda, Hector O.
    Fernandez-Lorenzo, Miriam
    Gallego, Jesus
    Jesus Gonzalez, J.
    Ignacio Gonzalez-Serrano, J.
    Pintos-Castro, Irene
    Sanchez-Portal, Miguel
    Cedres, Bernabe
    Gonzalez-Otero, Mauro
    Heath Jones, D.
    Bland-Hawthorn, Joss
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 638
  • [8] Bars formed in galaxy merging and their classification with deep learning
    Cavanagh, M.K.
    Bekki, K.
    [J]. Astronomy and Astrophysics, 2020, 641
  • [9] A Lightweight Deep Learning Framework for Galaxy Morphology Classification
    Wu, Donglin
    Zhang, Jinqu
    Li, Xiangru
    Li, Hui
    [J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (11)
  • [10] The miniJPAS survey: star-galaxy classification using machine learning
    Baqui, P. O.
    Marra, V.
    Casarini, L.
    Angulo, R.
    Diaz-Garcia, L. A.
    Hernandez-Monteagudo, C.
    Lopes, P. A. A.
    Lopez-Sanjuan, C.
    Muniesa, D.
    Placco, V. M.
    Quartin, M.
    Queiroz, C.
    Sobral, D.
    Solano, E.
    Tempel, E.
    Varela, J.
    Vilchez, J. M.
    Abramo, R.
    Alcaniz, J.
    Benitez, N.
    Bonoli, S.
    Carneiro, S.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    de Amorim, A. L.
    de Oliveira, C. M.
    Dupke, R.
    Ederoclite, A.
    Gonzalez Delgado, R. M.
    Marin-Franch, A.
    Moles, M.
    Ramio, H. Vazquez
    Sodre, L.
    Taylor, K.
    [J]. ASTRONOMY & ASTROPHYSICS, 2021, 645 (645)