Bayesian and frequentist approaches on estimation and testing for a zero-inflated binomial distribution

被引:0
|
作者
Nam, Seungji [1 ]
Kim, Seong W. [2 ]
Ng, Hon Keung Tony [3 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
[2] Hanyang Univ, Dept Appl Math, Ansan 15588, South Korea
[3] Southern Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
来源
基金
新加坡国家研究基金会;
关键词
Bayes factor; binomial distribution; EM algorithm; Jeffreys prior; maximum likelihood estimate; zero-inflated models; REGRESSION-MODEL; PARAMETERS;
D O I
10.15672/hujms.959817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To analyze discrete count data with excessive zeros, different zero-inflated statistical models that allow for frequent zero-valued observations have been developed. When the underlying data generation process of non-zero values is based on the number of successes in a sequence of independent Bernoulli trials, the zero-inflated binomial distribution is perhaps adequate for modeling purposes. In this paper, we discuss statistical inference for a zero-inflated binomial distribution using the objective Bayesian and frequentist approaches. Point and interval estimation of the model parameters and hypothesis testing for excessive zeros in a zero-inflated binomial distribution are developed. A Monte Carlo simulation study is used to assess the performance of estimation and hypothesis testing procedures. A comparative study of the objective Bayesian approach and the frequentist approach is provided. The proposed statistical inferential methods are applied to analyze an earthquake dataset and a baseball dataset for illustration.
引用
收藏
页码:834 / 856
页数:23
相关论文
共 50 条
  • [21] Bayesian negative binomial logit hurdle and zero-inflated model for characterizing smoking intensity
    Mekuanint Simeneh Workie
    Abebaw Gedef Azene
    [J]. Journal of Big Data, 8
  • [22] A Bayesian zero-inflated binomial regression and its application in dose-finding study
    Wanitjirattikal, Puntipa
    Shi, Chenyang
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2020, 30 (02) : 322 - 333
  • [23] A Bayesian zero-inflated negative binomial regression model for the integrative analysis of microbiome data
    Jiang, Shuang
    Xiao, Guanghua
    Koh, Andrew Y.
    Kim, Jiwoong
    Li, Qiwei
    Zhan, Xiaowei
    [J]. BIOSTATISTICS, 2021, 22 (03) : 522 - 540
  • [24] Distribution-free inference of zero-inflated binomial data for longitudinal studies
    He, H.
    Wang, W.
    Hu, J.
    Gallop, R.
    Crits-Christoph, P.
    Xia, Y.
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (10) : 2203 - 2219
  • [25] Bayesian Zero-Inflated Negative Binomial Regression Based on Polya-Gamma Mixtures
    Neelon, Brian
    [J]. BAYESIAN ANALYSIS, 2019, 14 (03): : 829 - 855
  • [26] Bayesian negative binomial logit hurdle and zero-inflated model for characterizing smoking intensity
    Workie, Mekuanint Simeneh
    Azene, Abebaw Gedef
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [27] Parameter Estimation on Zero-Inflated Negative Binomial Regression with Right Truncated Data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    [J]. SAINS MALAYSIANA, 2012, 41 (11): : 1483 - 1487
  • [28] Modeling citrus huanglongbing data using a zero-inflated negative binomial distribution
    de Almeida, Eudmar Paiva
    Janeiro, Vanderly
    Guedes, Terezinha Aparecida
    Mulati, Fabio
    Pedroza Carneiro, Jose Walter
    de Carvalho Nunes, William Mario
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2016, 38 (03): : 299 - 306
  • [29] Frequentist model averaging for zero-inflated Poisson regression models
    Zhou, Jianhong
    Wan, Alan T. K.
    Yu, Dalei
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (06) : 679 - 691
  • [30] A constrained marginal zero-inflated binomial regression model
    Ali, Essoham
    Diop, Aliou
    Dupuy, Jean-Francois
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (18) : 6396 - 6422