Bayesian and frequentist approaches on estimation and testing for a zero-inflated binomial distribution

被引:0
|
作者
Nam, Seungji [1 ]
Kim, Seong W. [2 ]
Ng, Hon Keung Tony [3 ]
机构
[1] Yonsei Univ, Dept Stat & Data Sci, Seoul 03722, South Korea
[2] Hanyang Univ, Dept Appl Math, Ansan 15588, South Korea
[3] Southern Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
来源
基金
新加坡国家研究基金会;
关键词
Bayes factor; binomial distribution; EM algorithm; Jeffreys prior; maximum likelihood estimate; zero-inflated models; REGRESSION-MODEL; PARAMETERS;
D O I
10.15672/hujms.959817
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To analyze discrete count data with excessive zeros, different zero-inflated statistical models that allow for frequent zero-valued observations have been developed. When the underlying data generation process of non-zero values is based on the number of successes in a sequence of independent Bernoulli trials, the zero-inflated binomial distribution is perhaps adequate for modeling purposes. In this paper, we discuss statistical inference for a zero-inflated binomial distribution using the objective Bayesian and frequentist approaches. Point and interval estimation of the model parameters and hypothesis testing for excessive zeros in a zero-inflated binomial distribution are developed. A Monte Carlo simulation study is used to assess the performance of estimation and hypothesis testing procedures. A comparative study of the objective Bayesian approach and the frequentist approach is provided. The proposed statistical inferential methods are applied to analyze an earthquake dataset and a baseball dataset for illustration.
引用
收藏
页码:834 / 856
页数:23
相关论文
共 50 条
  • [1] Default Bayesian testing for the zero-inflated Poisson distribution
    Han, Yewon
    Hwang, Haewon
    Ng, Hon keung tony
    Kim, Seong w.
    [J]. STATISTICS AND ITS INTERFACE, 2024, 17 (04) : 623 - 634
  • [2] Small Area Estimation on Zero-Inflated Data Using Frequentist and Bayesian Approach
    Sadik, Kusman
    Anisa, Rahma
    Aqmaliyah, Euis
    [J]. JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2019, 18 (01)
  • [3] Zero-inflated models and estimation in zero-inflated Poisson distribution
    Wagh, Yogita S.
    Kamalja, Kirtee K.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2248 - 2265
  • [4] Estimation in zero-inflated binomial regression with missing covariates
    Diallo, Alpha Oumar
    Diop, Aliou
    Dupuy, Jean-Francois
    [J]. STATISTICS, 2019, 53 (04) : 839 - 865
  • [5] Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model
    Garay, Aldo M.
    Lachos, Victor H.
    Bolfarine, Heleno
    [J]. JOURNAL OF APPLIED STATISTICS, 2015, 42 (06) : 1148 - 1165
  • [6] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    [J]. BIOMETRICS, 2001, 57 (01) : 219 - 223
  • [7] Zero-inflated non-central negative binomial distribution
    Tian, Wei-zhong
    Liu, Ting-ting
    Yang, Yao-ting
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (02) : 187 - 198
  • [8] Zero-inflated non-central negative binomial distribution
    Wei-zhong Tian
    Ting-ting Liu
    Yao-ting Yang
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2022, 37 : 187 - 198
  • [9] Zero-inflated non-central negative binomial distribution
    TIAN Weizhong
    LIU Tingting
    YANG Yaoting
    [J]. AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (02) - 198
  • [10] On estimation and influence diagnostics for zero-inflated negative binomial regression models
    Garay, Aldo M.
    Hashimoto, Elizabeth M.
    Ortega, Edwin M. M.
    Lachos, Victor H.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) : 1304 - 1318