Microbial antagonists and botanicals mediated disease management in tea, Camellia sinensis (L.) O. Kuntze: An overview

被引:15
|
作者
Bora, Popy [1 ]
Bora, L. C. [1 ]
机构
[1] Assam Agr Univ, Dept Plant Pathol, Jorhat 785013, Assam, India
关键词
Botanicals; Consortium; Diseases; Microbial antagonists; Plant defense; Tea; BLISTER BLIGHT DISEASE; BIOCONTROL AGENTS; PLANT-EXTRACTS; ROT DISEASE; BACTERIAL COMMUNITIES; PHOMOPSIS CANKER; FUNGAL PATHOGENS; FOLIAR DISEASES; FUNGICIDES; RESISTANCE;
D O I
10.1016/j.cropro.2021.105711
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Tea, Camellia sinensis (L.) O. Kuntze (family Theaceae) known for high antioxidant value on account of polyphenolic compounds predominantly of catechins, have long history of cultivation and utilization. Tea plant rhizosphere harbors an array of microbial antagonists (MA) effective against many of the soil borne diseases. Green management of diseases using MA coupled with botanicals is relatively a new approach in tea plantation, considering chemical residue free tea as major trade requirement. A variety of MA have shown their worth in curbing soil borne as well as foliar/stem diseases, however very limited commercial bioformulations have found commercial field application, despite so much cutting edge research. On the contrary, botanicals are yet to carve a niche in suppressing pathogens, as evident from majority of in vitro studies, thereby, often questioning their utility under field condition. However, application of MA in consortium mode (using rhizosphere and endosphere microbial communities) is known to enhance intensity as well duration of defense signaling, thereby, elevating the transcriptional activation of several metabolic pathways and consequent suppression of pathogens associated with variety of tea diseases. Biochemical analysis of tea plants treated with either MA or botanical extracts under challenge inoculation of pathogens displayed an enhanced expression of peroxidase, polyphenol oxidase, and phenylalanine ammonia-lyase activities collectively contributing towards improved antioxidant profiling, a prerequisite to disease resistance response. The proposed review envisages the growing possibilities on use of MA and botanicals as greener side of disease management in tea crop.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Zhang, Lei
    Li, Qiong
    Ma, Lifeng
    Ruan, Jianyun
    PLANT AND SOIL, 2013, 366 (1-2) : 659 - 669
  • [22] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Jeyaraj, Anburaj
    Chandran, Viswanathan
    Gajjeraman, Prabu
    PLANT CELL REPORTS, 2014, 33 (07) : 1053 - 1069
  • [23] Characterization of fluoride uptake by roots of tea plants (Camellia sinensis (L.) O. Kuntze)
    Lei Zhang
    Qiong Li
    Lifeng Ma
    Jianyun Ruan
    Plant and Soil, 2013, 366 : 659 - 669
  • [24] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858
  • [25] Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants
    Roghieh Hajiboland
    Sara Bahrami-Rad
    Soodabeh Bastani
    Roser Tolrà
    Charlotte Poschenrieder
    Acta Physiologiae Plantarum, 2013, 35 : 2373 - 2381
  • [26] Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency
    Netto L.A.
    Jayaram K.M.
    Puthur J.T.
    Physiology and Molecular Biology of Plants, 2010, 16 (4) : 359 - 367
  • [27] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    Shane V. van Breda
    Chris F. van der Merwe
    Hannes Robbertse
    Zeno Apostolides
    Planta, 2013, 237 : 849 - 858
  • [28] Agrobacterium rhizogenes-mediated hairy root production in tea leaves [Camellia sinensis (L.) O. Kuntze]
    John, K. M. Mariya
    Joshi, Sarvottam D.
    Mandal, A. K. A.
    Kumar, S. Ram
    Kumar, R. Raj
    INDIAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (04): : 430 - 434
  • [29] Comparative study of cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze]
    Liang, YR
    Lu, JL
    Zhang, LY
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2002, 37 (06): : 627 - 634
  • [30] Optimising parameters for biolistic gun-mediated genetic transformation of tea [Camellia sinensis (L.) O. Kuntze]
    Saini, U.
    Kaur, D.
    Bhattacharya, A.
    Kumar, S.
    Singh, R. D.
    Ahuja, P. S.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2012, 87 (06): : 605 - 612