Fake News Detection in Social Networks via Crowd Signals

被引:132
|
作者
Tschiatschek, Sebastian [1 ,5 ]
Singla, Adish [2 ]
Rodriguez, Manuel Gomez [3 ]
Merchant, Arpit [4 ]
Krause, Andreas [5 ]
机构
[1] Microsoft Res, Cambridge, England
[2] MPI SWS, Saarbrucken, Germany
[3] MPI SWS, Kaiserslautern, Germany
[4] IIIT H, Hyderabad, India
[5] Swiss Fed Inst Technol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1145/3184558.3188722
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Our work considers leveraging crowd signals for detecting fake news and is motivated by tools recently introduced by Facebook that enable users to flag fake news. By aggregating users' flags, our goal is to select a small subset of news every day, send them to an expert (e.g., via a third-party fact-checking organization), and stop the spread of news identified as fake by an expert. The main objective of our work is to minimize the spread of misinformation by stopping the propagation of fake news in the network. It is especially challenging to achieve this objective as it requires detecting fake news with high-confidence as quickly as possible. We show that in order to leverage users' flags efficiently, it is crucial to learn about users' flagging accuracy. We develop a novel algorithm, DETECTIVE, that performs Bayesian inference for detecting fake news and jointly learns about users' flagging accuracy over time. Our algorithm employs posterior sampling to actively trade off exploitation (selecting news that maximize the objective value at a given epoch) and exploration (selecting news that maximize the value of information towards learning about users' flagging accuracy). We demonstrate the effectiveness of our approach via extensive experiments and show the power of leveraging community signals for fake news detection.
引用
收藏
页码:517 / 524
页数:8
相关论文
共 50 条
  • [41] Fake News Detection in Social Media using Blockchain
    Paul, Shovon
    Joy, Jubair Islam
    Sarker, Shaila
    Abdullah-Al-Haris Shakib
    Ahmed, Sharif
    Das, Amit Kumar
    2019 7TH INTERNATIONAL CONFERENCE ON SMART COMPUTING & COMMUNICATIONS (ICSCC), 2019, : 250 - 254
  • [42] Explainable Detection of Fake News and Cyberbullying on Social Media
    Li, Cheng-Te
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 398 - 398
  • [43] Fake News Detection Techniques on Social Media: A Survey
    Ali, Ihsan
    Bin Ayub, Mohamad Nizam
    Shivakumara, Palaiahnakote
    Noor, Nurul Fazmidar Binti Mohd
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [44] Fake News Detection in Social Media: A Systematic Review
    Medeiros, Francisco D. C.
    Braga, Reinaldo Bezerra
    PROCEEDINGS OF 16TH BRAZILIAN SYMPOSIUM ON INFORMATION SYSTEMS ON DIGITAL TRANSFORMATION AND INNOVATION, SBSI 2020, 2020,
  • [45] Fake news detection via knowledgeable prompt learning
    Jiang, Gongyao
    Liu, Shuang
    Zhao, Yu
    Sun, Yueheng
    Zhang, Meishan
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [46] Deep Diffusive Neural Network based Fake News Detection from Heterogeneous Social Networks
    Zhang, Jiawei
    Dong, Bowen
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1259 - 1266
  • [47] Multi-Modal fake news Detection on Social Media with Dual Attention Fusion Networks
    Yang, Haitian
    Zhao, Xuan
    Sun, Degang
    Wang, Yan
    Zhu, He
    Ma, Chao
    Huang, Weiqing
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [48] Optimizing the Service Efficacy of Crowd Ratings in Curbing Fake News Dissemination on Social Media
    Liu, Qian
    Lyu, Yang
    Tang, Jian
    Fan, Weiguo
    International Journal of Crowd Science, 2024, 8 (03) : 110 - 121
  • [49] Leveraging Diversity-Aware Context Attention Networks for Fake News Detection on Social Platforms
    Chen, Zhikai
    Wu, Peng
    Pan, Li
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [50] TCGNN: Text-Clustering Graph Neural Networks for Fake News Detection on Social Media
    Li, Pei-Cheng
    Li, Cheng-Te
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 134 - 146