Convergence properties of fixed-point harmonic balance algorithms

被引:0
|
作者
Blakey, Peter A. [1 ]
Bates, Scott P. [1 ]
机构
[1] No Arizona Univ, Dept Elect Engn, Flagstaff, AZ 86011 USA
关键词
circuit simulation; stability criteria;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A necessary condition for the local convergence of Borich's fixed point harmonic balance algorithm is derived. The delineation of regions with different convergence properties is then performed using convergence maps. These maps explain the poor convergence and non-convergence that is exhibited by fixed point harmonic balance algorithms in practical applications. A connection between optimal fixed point harmonic balance and conventional harmonic balance is established. This provides a series of insights into ways of improving the generality and performance of fixed point harmonic balance algorithms.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 50 条
  • [21] SPHERICAL ALGORITHMS AND EVALUATION OF THE FIXED-POINT SET
    GALPERIN, EA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (12) : 1545 - 1557
  • [22] SQNR Estimation of Fixed-Point DSP Algorithms
    Gabriel Caffarena
    Carlos Carreras
    Juan A. López
    Ángel Fernández
    EURASIP Journal on Advances in Signal Processing, 2010
  • [23] On the fixed-point accuracy analysis of FFT algorithms
    Chang, Wei-Hsin
    Nguyen, Truong Q.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) : 4673 - 4682
  • [24] Fast Fixed-Point Optimization of DSP Algorithms
    Caffarena, Gabriel
    Carreras, Carlos
    Lopez, Juan A.
    Fernandez, Angel
    PROCEEDINGS OF THE 2010 18TH IEEE/IFIP INTERNATIONAL CONFERENCE ON VLSI AND SYSTEM-ON-CHIP, 2010, : 195 - 200
  • [25] EFFICIENT ACCELERATION TECHNIQUES FOR FIXED-POINT ALGORITHMS
    SAIGAL, R
    TODD, MJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (05) : 997 - 1007
  • [26] SIMPLICAL FIXED-POINT ALGORITHMS - VANDERLAAN,G
    WILSON, JM
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 1981, 32 (09) : 847 - 848
  • [27] Regularized algorithms for hierarchical fixed-point problems
    Yao, Yonghong
    Chen, Rudong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6826 - 6834
  • [28] Automatic evaluation of the accuracy of fixed-point algorithms
    Menard, D
    Sentieys, O
    DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE AND EXHIBITION, 2002 PROCEEDINGS, 2002, : 529 - 535
  • [29] Convergence-preserving maps and fixed-point theorems
    Gutman, A. E.
    Koptev, A. V.
    MATHEMATICAL NOTES, 2014, 95 (5-6) : 738 - 742
  • [30] CHARACTERIZATION OF LOCAL CONVERGENCE FOR FIXED-POINT ITERATIONS IN R
    STEPLEMAN, RS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (06) : 887 - 894