The enhancement of laser absorptivity and properties in laser powder bed fusion manufactured Cu-Cr-Zr alloy by employing Y2O3 coated powder as precursor

被引:23
|
作者
Hu, Zhangping [1 ]
Gan, Bin [2 ]
Tan, Jing [3 ]
Wu, Jin [4 ]
Chen, Songhua [3 ]
Dong, Ji [4 ]
Ma, Zongqing [1 ,3 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin, Peoples R China
[2] Cent Iron & Steel Res Inst, Beijing Key Lab Adv High Temp Mat, Beijing, Peoples R China
[3] Longyan Univ, Coll Chem & Mat Sci, Longyan 364012, Peoples R China
[4] Tianjin Sino German Univ Appl Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu-Cr-Zr; Laser powder bed fusion; Y; 2; O; 3; coating; Strengthening mechanism; METAL-MATRIX NANOCOMPOSITES; ANISOTROPIC TENSILE BEHAVIOR; HEAT-TREATMENTS; INCONEL; 718; MICROSTRUCTURE; STRENGTH; PRECIPITATION; COMPONENTS; TI-6AL-4V; RECRYSTALLIZATION;
D O I
10.1016/j.jallcom.2022.167111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is always a great challenge to laser additive manufacture high-performance metal parts with high laser reflectivity, such as Cu based alloys, Al-Si based alloys and so on. In this work, the uniform thin Y2O3 coating was successfully introduced on the surface of the Cu-Cr-Zr powders by an in-situ chemical method. This Y2O3 coating can reduce the laser reflectivity of Cu-Cr-Zr powders without destroying their sphericity. The effect mechanism of Y2O3 on the microstructure, mechanical properties and electrical conductivity of CuCr-Zr specimens was further clarified. The grain size of the LPBF manufactured specimens is much smaller in case of Y2O3 doped Cu-Cr-Zr powder than that of the Cu-Cr-Zr powder. The Cu2CrZr(Y, O) nanoparticles with the size of similar to 50 nm form in the Cu matrix of Y2O3 doped Cu-Cr-Zr specimens, in addition to the Cr and Cu2CrZr precipitated particles. These Cu2CrZr and Cu2CrZr(Y, O) precipitated particles both exhibit a coherent interface with Cu matrix. Due to the refined grains and coherent second phase nanoparticles within grains mentioned above, the yield strength and ductility of Y2O3 doped Cu-Cr-Zr specimens are both improved significantly compared with the yield strength and ductility of undoped Cu-Cr-Zr specimens. Furthermore, the correlation between microstructure and properties of the Y2O3 doped Cu-Cr-Zr alloys manufactured by LPBF was also clarified. Our work provides a new strategy and in-depth view for the laser additive manufacturing of high-performance copper alloys and other alloys with high laser reflectivity. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Microstructure and mechanical properties of Al-Zn-Mg-Cu-Er-Zr alloy processed by laser powder bed fusion
    Pei, Yu
    Wei, Wu
    Hu, Jifei
    Bi, Jianlei
    Gao, Kunyuan
    Wen, Shengping
    Wu, Xiaolan
    Huang, Hui
    Nie, Zuoren
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2025, 35 : 4164 - 4174
  • [32] Microstructure evaluation and resultant mechanical properties of laser- arc hybrid additive manufactured Cu-Cr-Zr alloy
    Ma, Guangyi
    Wu, Shengnan
    Wang, Ruzheng
    Liu, Dehua
    Niu, Fangyong
    Bi, Guijun
    Wu, Dongjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 912
  • [33] Heat treatment of Al-Cu-Li-Sc-Zr alloy produced by laser powder bed fusion
    Qi, Yang
    Zhang, Hu
    Zhang, Wenqi
    Hu, Zhiheng
    Zhu, Haihong
    MATERIALS CHARACTERIZATION, 2023, 195
  • [34] Solidification Mechanism of Microstructure of Al-Si-Cu-Ni Alloy Manufactured by Laser Powder Bed Fusion and Mechanical Properties Effect
    Shi, Zhichao
    Yan, Pengfei
    Yan, Biao
    METALS, 2024, 14 (05)
  • [35] Effects of the microstructure and texture characteristics on mechanical properties of the Al-Ni-Cu-Fe alloy manufactured by laser powder bed fusion
    Chang, Kai-Chieh
    Zhao, Jun-Ren
    Hung, Fei-Yi
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 27 : 3411 - 3423
  • [36] Superior Mechanical Properties of Invar36 Alloy Lattices Structures Manufactured by Laser Powder Bed Fusion
    He, Gongming
    Peng, Xiaoqiang
    Zhou, Haotian
    Huang, Guoliang
    Xie, Yanjun
    He, Yong
    Liu, Han
    Huang, Ke
    MATERIALS, 2023, 16 (12)
  • [37] Microstructure and mechanical properties of a modified 316 austenitic stainless steel alloy manufactured by laser powder bed fusion
    Svahn, F.
    Mishra, P.
    Edin, E.
    Akerfeldt, P.
    Antti, M. -l.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1452 - 1462
  • [38] Characterization of microstructure and mechanical properties of Ta-10W alloy manufactured by laser powder bed fusion
    Wang, Xuehua
    Wang, Difei
    Zhang, Yingwei
    Li, Pengting
    Tan, Yi
    Cao, Lijun
    Liu, Bin
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 122
  • [39] Thermal cycling on microstructure and mechanical properties of laser powder bed fusion manufactured IN738LC alloy
    Yong Hu
    HuiBin Jia
    YongQi Hu
    Cheng Chu
    Xu Zhang
    LiHua Wang
    Dong Zhang
    Rare Metals, 2024, 43 (12) : 6649 - 6672
  • [40] Thermal cycling on microstructure and mechanical properties of laser powder bed fusion manufactured IN738LC alloy
    Hu, Yong
    Jia, Hui-Bin
    Hu, Yong-Qi
    Chu, Cheng
    Zhang, Xu
    Wang, Li-Hua
    Zhang, Dong
    RARE METALS, 2024, 43 (12) : 6649 - 6672