A study on Goldbach conjecture

被引:10
|
作者
Carbo-Dorca, Ramon [1 ]
机构
[1] Univ Girona, Ctr Europeu Recerca Teor, Seccio Quim Quant & Matemat, Girona 17071, Catalonia, Spain
关键词
N-dimensional Boolean Hypercubes; Boolean tagged sets; Mersenne numbers; Canonical Boolean Hypercube vertices; Matrix extended sum of two vectors; Goldbach's conjecture; QUANTUM-CHEMICAL APPLICATIONS; NESTED SUMMATION SYMBOLS; BOOLEAN TAGGED SETS; SIMILARITY MEASURES; CONVEX-SETS; FUZZY-SETS; DEFINITION;
D O I
10.1007/s10910-016-0649-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The general structure and properties of Boolean Hypercubes is applied to discuss Goldbach's conjecture. A simple reasoning is developed to show that any even unsigned integer, belonging to the interval comprised between two successive powers of two, complies with the fact that it can be expressed as the sum of all the odd integers in the interval from 1 up to the nearest upper power of two, and thus as a sum of all pairs of prime numbers within the interval.
引用
收藏
页码:1798 / 1809
页数:12
相关论文
共 50 条
  • [1] A study on Goldbach conjecture
    Ramon Carbó-Dorca
    [J]. Journal of Mathematical Chemistry, 2016, 54 : 1798 - 1809
  • [2] GOLDBACH CONJECTURE
    POGORZELSKI, HA
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 292 : 1 - 12
  • [3] On Goldbach Conjecture
    Meireles, Manuel
    [J]. APPLIED AND COMPUTATIONAL MATHEMATICS, 2ND EDITION, 2008, : 93 - 97
  • [4] A SOLUTION OF THE GOLDBACH CONJECTURE
    Fragnito, Nicola
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 20 (02): : 147 - 211
  • [5] Oscillations in the Goldbach conjecture
    Mossinghoff, Michael J.
    Trudgian, Timothy S.
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 295 - 307
  • [6] Goldbach's Conjecture
    林自新
    [J]. 中学生数学, 2004, (15) : 41 - 41
  • [7] COROLLARY OF GOLDBACH CONJECTURE
    COHEN, E
    [J]. DUKE MATHEMATICAL JOURNAL, 1962, 29 (04) : 625 - &
  • [8] A reformulation of the Goldbach conjecture
    Ikorong, Gilbert
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (04): : 465 - 469
  • [9] A proof of the strong Goldbach conjecture
    Bruckman, Paul S.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (08) : 1102 - +
  • [10] GOLDBACH CONJECTURE AND PARITY PROBLEM
    ZHANG, MY
    [J]. KEXUE TONGBAO, 1988, 33 (15): : 1238 - 1240