On Goldbach Conjecture

被引:0
|
作者
Meireles, Manuel [1 ]
机构
[1] FACCAMP, Dept Exact Sci, Campo Limpo Paulista, SP, Brazil
关键词
prime numbers; Goldbach Conjecture;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The objective of the present work is to present an approach for a solution of Goldbach Conjecture. For such the method of the contradiction was adopted, breaking of the hypothesis that there is, at least, an equal number that is not the sum of two prime numbers. The premise that sustains the demonstration is the following: a prime number, which has the properties of the Theorem of Wilson, can be represented by the floor function. In applied mathematics it can be useful to know that he/she/it can assure the condition of a number as being prime number, using the floor function.
引用
收藏
页码:93 / 97
页数:5
相关论文
共 50 条
  • [1] GOLDBACH CONJECTURE
    POGORZELSKI, HA
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1977, 292 : 1 - 12
  • [2] A SOLUTION OF THE GOLDBACH CONJECTURE
    Fragnito, Nicola
    [J]. JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 20 (02): : 147 - 211
  • [3] A study on Goldbach conjecture
    Carbo-Dorca, Ramon
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (09) : 1798 - 1809
  • [4] Oscillations in the Goldbach conjecture
    Mossinghoff, Michael J.
    Trudgian, Timothy S.
    [J]. JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2022, 34 (01): : 295 - 307
  • [5] Goldbach's Conjecture
    林自新
    [J]. 中学生数学, 2004, (15) : 41 - 41
  • [6] COROLLARY OF GOLDBACH CONJECTURE
    COHEN, E
    [J]. DUKE MATHEMATICAL JOURNAL, 1962, 29 (04) : 625 - &
  • [7] A study on Goldbach conjecture
    Ramon Carbó-Dorca
    [J]. Journal of Mathematical Chemistry, 2016, 54 : 1798 - 1809
  • [8] A reformulation of the Goldbach conjecture
    Ikorong, Gilbert
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (04): : 465 - 469
  • [9] A proof of the strong Goldbach conjecture
    Bruckman, Paul S.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (08) : 1102 - +
  • [10] GOLDBACH CONJECTURE AND PARITY PROBLEM
    ZHANG, MY
    [J]. KEXUE TONGBAO, 1988, 33 (15): : 1238 - 1240