An adaptive ensemble Kalman filter for soil moisture data assimilation

被引:173
|
作者
Reichle, Rolf H. [1 ,3 ]
Crow, Wade T. [2 ]
Keppenne, Christian L. [1 ,4 ]
机构
[1] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[2] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD USA
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] Sci Applicat Int Corp, Beltsville, MD USA
关键词
D O I
10.1029/2007WR006357
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In a 19- year twin experiment for the Red- Arkansas river basin we assimilate synthetic surface soil moisture retrievals into the NASA Catchment land surface model. We demonstrate how poorly specified model and observation error parameters affect the quality of the assimilation products. In particular, soil moisture estimates from data assimilation are sensitive to observation and model error variances and, for very poor input error parameters, may even be worse than model estimates without data assimilation. Estimates of surface heat fluxes and runoff are at best marginally improved through the assimilation of surface soil moisture and tend to have large errors when the assimilation system operates with poor input error parameters. We present a computationally affordable, adaptive assimilation system that continually adjusts model and observation error parameters in response to internal diagnostics. The adaptive filter can identify model and observation error variances and provide generally improved assimilation estimates when compared to the non- adaptive system.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Snow data assimilation via an ensemble Kalman filter
    Slater, Andrew G.
    Clark, Martyn P.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2006, 7 (03) : 478 - 493
  • [32] On numerical properties of the ensemble Kalman filter for data assimilation
    Li, Jia
    Xiu, Dongbin
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (43-44) : 3574 - 3583
  • [33] Integrated Hybrid Data Assimilation for an Ensemble Kalman Filter
    Lei, Lili
    Wang, Zhongrui
    Tan, Zhe-Min
    [J]. MONTHLY WEATHER REVIEW, 2021, 149 (12) : 4091 - 4105
  • [34] Upper Atmosphere Data Assimilation With an Ensemble Kalman Filter
    Matsuo, Tomoko
    [J]. MODELING THE IONOSPHERE-THERMOSPHERE SYSTEM, 2013, 201 : 273 - 282
  • [35] A sequential ensemble Kalman filter for atmospheric data assimilation
    Houtekamer, PL
    Mitchell, HL
    [J]. MONTHLY WEATHER REVIEW, 2001, 129 (01) : 123 - 137
  • [36] Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation
    Houtekamer, P. L.
    Zhang, Fuqing
    [J]. MONTHLY WEATHER REVIEW, 2016, 144 (12) : 4489 - 4532
  • [37] An Ensemble Kalman Filter and Smoother for Satellite Data Assimilation
    Stroud, Jonathan R.
    Stein, Michael L.
    Lesht, Barry M.
    Schwab, David J.
    Beletsky, Dmitry
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 978 - 990
  • [38] Impacts of Assimilation Frequency on Ensemble Kalman Filter Data Assimilation and Imbalances
    He, Huan
    Lei, Lili
    Whitaker, Jeffrey S.
    Tan, Zhe-Min
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (10)
  • [39] Soil moisture map construction by sequential data assimilation using an extended Kalman filter
    Agyeman, Bernard T.
    Bo, Song
    Sahoo, Soumya R.
    Yin, Xunyuan
    Liu, Jinfeng
    Shah, Sirish L.
    [J]. JOURNAL OF HYDROLOGY, 2021, 598
  • [40] Soil moisture map construction by sequential data assimilation using an extended Kalman filter
    Agyeman, Bernard T.
    Bo, Song
    Sahoo, Soumya R.
    Yin, Xunyuan
    Liu, Jinfeng
    Shah, Sirish L.
    [J]. 2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 4351 - 4356