Blow-up of solutions for the damped Boussinesq equation

被引:13
|
作者
Polat, N
Kaya, D [1 ]
Tutalar, HI
机构
[1] Dicle Univ, Dept Math, TR-21280 Diyarbakir, Turkey
[2] Firat Univ, Dept Math, TR-23119 Elazig, Turkey
关键词
damped Boussinesq equation; blow-up of solutions; initial boundary value problems; Sobolev-Poincare inequality; Holder inequality;
D O I
10.1515/zna-2005-0701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the blow-up of solutions as a function of time to the initial boundary value problem for the damped Boussinesq equation. Under some assumptions we prove that the solutions with vanishing initial energy blow up in finite time.
引用
收藏
页码:473 / 476
页数:4
相关论文
共 50 条
  • [31] ON GLOBAL SOLUTIONS AND BLOW-UP OF SOLUTIONS FOR A NONLINEARLY DAMPED PETROVSKY SYSTEM
    Wu, Shun-Tang
    Tsai, Long-Yi
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2A): : 545 - 558
  • [32] ON THE BLOW-UP OF SOLUTIONS FOR THE b-EQUATION
    Kodzha, M.
    [J]. ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2012, 81 (01): : 117 - 126
  • [33] Existence and blow-up of solutions of a pseudoparabolic equation
    Yushkov, E. V.
    [J]. DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 291 - 295
  • [34] Blow-up of solutions of a quasilinear parabolic equation
    Suzuki, Ryuichi
    Umeda, Noriaki
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (02) : 425 - 448
  • [35] Blow-up of solutions of the nonlinear Sobolev equation
    Cao, Yang
    Nie, Yuanyuan
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 28 : 1 - 6
  • [36] BLOW-UP OF SOLUTIONS TO A NONLINEAR WAVE EQUATION
    Georgiev, Svetlin Georgiev
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [37] Existence and blow-up of solutions of a pseudoparabolic equation
    E. V. Yushkov
    [J]. Differential Equations, 2011, 47
  • [38] Global solutions and finite time blow-up for fourth order nonlinear damped wave equation
    Xu, Runzhang
    Wang, Xingchang
    Yang, Yanbing
    Chen, Shaohua
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (06)
  • [39] Polynomial-exponential stability and blow-up solutions to a nonlinear damped viscoelastic Petrovsky equation
    Peyravi A.
    Tahamtani F.
    [J]. SeMA Journal, 2020, 77 (2) : 181 - 201
  • [40] To blow-up or not to blow-up for a granular kinetic equation
    Carrillo, José A.
    Shu, Ruiwen
    Wang, Li
    Xu, Wuzhe
    [J]. Physica D: Nonlinear Phenomena, 2024, 470