The objective of this research is to perform the processing and mechanical characterization on 3D-printed high-temperature polymer (polycarbonate) reinforced with short carbon fiber (SCF) composite material fabricated with the help of fused filament fabrication process. For this study, different SCF volume fractions (3%, 5%, 7.5%, 10%) with varying printing speed (25, 50, 75 mm/s) are taken as the input variables. It was observed that tensile, flexural, compressive properties and micro-hardness were greatly affected by varying the input processing parameters. To find the orthotropic properties of 3D-printed specimens, tensile properties are analyzed on 0 degrees in the X-Y plane, 90 degrees in the X-Y plane, and 90 degrees in Z-axis. Scanning electron microscopy (SEM) is performed to study the effect of fiber breakage, fiber distribution, fiber accumulation, and fiber length on the mechanical performance of the final part. After performing mechanical testing, investigation of microstructural behavior of tensile, flexural, and compressive samples is accomplished using SEM. From the micrograph analysis and mechanical testing, it was noticed that fiber behavior inside the composite has created a great influence in deciding the mechanical performance of the final part. Micromechanics and classical lamination theory phenomena are followed to determine the effective young's modulus of 3D-printed samples mathematically. Printing direction and reinforcement percentage are found out to be the most influential parameters in deciding the final properties of 3D-printed specimens by using the statistical tool ANOVA. Response surface methodology is used to determine the optimum parameters to get good-quality print with SCF-reinforced PC.