Improved strategies for electrochemical 1,4-NAD(P)H2 regeneration: A new era of bioreactors for industrial biocatalysis

被引:39
|
作者
Morrison, Clifford S. [1 ]
Armiger, William B. [5 ]
Dodds, David R. [5 ]
Dordick, Jonathan S. [1 ,2 ,3 ,4 ]
Koffas, Mattheos A. G. [1 ,2 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem & Biol Engn, 110 8th St, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Biol Sci, 110 8th St, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, 110 8th St, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Biomed Engn, 110 8th St, Troy, NY 12180 USA
[5] BioChemInsights Inc, Malvern, PA 19355 USA
基金
美国国家科学基金会;
关键词
Cofactors; NADH; NADPH; Biocatalysis; Electrochemical bioreactors; Cofactor regeneration; Industrial biotechnology; Renalase; NICOTINAMIDE-ADENINE-DINUCLEOTIDE; CATALYZED ORGANIC-SYNTHESIS; GLASSY-CARBON ELECTRODE; LACTATE-DEHYDROGENASE INHIBITOR; RECOMBINANT ESCHERICHIA-COLI; DIPHOSPHOPYRIDINE NUCLEOTIDE; HORSERADISH-PEROXIDASE; SYNTHETIC APPLICATION; NADH REGENERATION; COENZYME DIMERS;
D O I
10.1016/j.biotechadv.2017.10.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial enzymatic reactions requiring 1,4-NAD(P)H-2 to perform redox transformations often require convoluted coupled enzyme regeneration systems to regenerate 1,4-NAD(P)H-2 from NAD(P) and recycle the cofactor for as many turnovers as possible. Renewed interest in recycling the cofactor via electrochemical means is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). We review various literature strategies for mitigating adventitious product formation by electrochemical cofactor regeneration systems, and offer insight as to how a successful electrochemical bioreactor system could be constructed to engineer efficient 1,4-NAD(P)H-2-dependent enzyme reactions of interest to the industrial biocatalysis community.
引用
收藏
页码:120 / 131
页数:12
相关论文
共 37 条
  • [21] In-situ growth 2D Fe2P nanosheets on the surface of 1D Cd0.9Zn0.1S nanorods for remarkably improved photocatalytic H2 evolution
    Han, Yanling
    He, Jiari
    Hu, Lihua
    Fu, Hongquan
    Dang, Haifeng
    Wei, Shuai
    Li, Jing
    Tian, Shaopeng
    Liu, Yuanyuan
    Wang, Peng
    APPLIED CATALYSIS A-GENERAL, 2024, 677
  • [22] In-situ growth 2D Fe2P nanosheets on the surface of 1D Cd0.9Zn0.1S nanorods for remarkably improved photocatalytic H2 evolution
    Han, Yanling
    He, Jiari
    Hu, Lihua
    Fu, Hongquan
    Dang, Haifeng
    Wei, Shuai
    Li, Jing
    Tian, Shaopeng
    Liu, Yuanyuan
    Wang, Peng
    Applied Catalysis A: General, 2024, 677
  • [23] Characterization of a new organic-cation cyclotetraphosphate:: (1,4-HOC6H4NH3)4P4O12•6H2O
    Soumhi, EH
    Saadoune, I
    Driss, A
    Jouini, T
    JOURNAL OF SOLID STATE CHEMISTRY, 1999, 144 (02) : 318 - 324
  • [24] Wave packet quantum dynamics of C(3P) + H2(X1Σg+) → H(2S) + CH(2Π) reaction based on new CH2((x)over-tilde3A") surface
    Zhao Wen-Li
    Wang Yong-Gang
    Zhang Lu-Lu
    Yue Da-Guang
    Meng Qing-Tian
    ACTA PHYSICA SINICA, 2020, 69 (08)
  • [25] Non-adiabatic dynamical studies of the Rb(52P)+H2(X1 S+g ) ? RbH(X1S+) + H(2s) reaction based on new diabatic potential energy surfaces
    Wen, Li
    Sun, Yuanxia
    Li, Wentao
    CHEMICAL PHYSICS, 2023, 575
  • [26] Quantum state-to-state dynamics of C(3P) + H2(X1Σg+) → CH(2Π) + H(2S) reaction based on a new CH2 (X3A′′) potential energy surface
    Zhao, Juan
    Yue, Daguang
    Liu, Dong
    Gao, Shang
    Wang, Lifei
    Zhang, Lulu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (09) : 4858 - 4870
  • [27] Facile syntheses of new multidentate (phosphino)amines:: X-ray structure of 1,4-{(OC)4Mo(Ph2P)2NCH2}2C6H4
    Gaw, KG
    Smith, MB
    Steed, JW
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2002, 664 (1-2) : 294 - 297
  • [28] New strategies in the development of polynuclear complexes.: Crystal structure of the tetranuclear copper(II) complex [Cu4(L1)2(OH)4Cl2(H2O)2]2(H3O2) (ClO4)2Cl•2H2O (L1=2,5,8,11-tetraaza[12](1,4)naphthalenecyclophane)
    Burguete, MI
    Escuder, B
    García-España, E
    Latorre, J
    Luis, SV
    Ramírez, JA
    INORGANICA CHIMICA ACTA, 2000, 300 : 970 - 977
  • [29] Synthesis, Structure and Electrochemical Property of a New Three-Dimensional Inorganic–Organic Vanadate Coordination Polymer [Cu2(bbi)2(V4O12)] · 4H2O (bbi = 1,1-(1,4-butanediyl)bis(imidazole))
    Xiuli Wang
    Baokuan Chen
    Guocheng Liu
    Hongyan Lin
    Hailiang Hu
    Yongqiang Chen
    Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19 : 176 - 180
  • [30] Structure and Vibrational Spectrum ofβ-Cs3(HSO4)2[H2-x( P 1-x, Sx)O4] (x~0.5), a New Superprotonic Conductor, and a Comparison withα-Cs3(HSO4)2(H2 PO 4)
    Materials Science, 138-78, California Institute of Technology, Pasadena, CA 91125, United States
    不详
    J. Solid State Chem., 2 (373-387):