A Necessary Characteristic Equation of Diffusion Processes Having Gaussian Marginals

被引:1
|
作者
Mudakkar, Syeda Rabab [1 ]
机构
[1] Lahore Sch Econ, Ctr Math & Stat Sci, Lahore 53200, Pakistan
关键词
MARTINGALES; MODELS;
D O I
10.1155/2012/598590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to characterize one-dimensional homogeneous diffusion process, under the assumption that marginal density of the process is Gaussian. The method considers the forward Kolmogorov equation and Fourier transform operator approach. The result establishes the necessary characteristic equation between drift and diffusion coefficients for homogeneous and nonhomogeneous diffusion processes. The equation for homogeneous diffusion process leads to characterize the possible diffusion processes that can exist. Two well-known examples using the necessary characteristic equation are also given.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] ON THE NECESSARY AND SUFFICIENT CONDITIONS TO SOLVE A HEAT EQUATION WITH GENERAL ADDITIVE GAUSSIAN NOISE
    Hu, Yaozhong
    Liu, Yanghui
    Tindel, Samy
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (03) : 669 - 690
  • [22] On the Necessary and Sufficient Conditions to Solve A Heat Equation with General Additive Gaussian Noise
    Yaozhong Hu
    Yanghui Liu
    Samy Tindel
    Acta Mathematica Scientia, 2019, 39 : 669 - 690
  • [23] Characteristic Function of Quadratic Convolution Functional on the Space of Trajectories of Gaussian Processes
    Yu. P. Virchenko
    A. S. Mazmanishvili
    Lobachevskii Journal of Mathematics, 2024, 45 (11) : 5709 - 5722
  • [24] Moment functions of a solution of the diffusion equation with Gaussian random coefficients
    Borovikova, M. M.
    Zadorozhniy, V. G.
    DIFFERENTIAL EQUATIONS, 2010, 46 (07) : 1068 - 1070
  • [25] Moment functions of a solution of the diffusion equation with Gaussian random coefficients
    M. M. Borovikova
    V. G. Zadorozhniy
    Differential Equations, 2010, 46 : 1068 - 1070
  • [26] Closed form solutions of the heat diffusion equation with a Gaussian source
    Antonakakis, T.
    Maglioni, C.
    Vlachoudis, V.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 : 314 - 322
  • [27] MODELING OF DIFFUSION-PROCESSES - NUMERICAL-SOLUTIONS TO THE DIFFUSION EQUATION
    ROMIG, AD
    PEHLIVANTURK, NY
    INAL, OT
    JOURNAL OF METALS, 1988, 40 (07): : A6 - A6
  • [28] ON THE SHAPE OF TRAJECTORIES OF GAUSSIAN PROCESSES HAVING LARGE MASSIVE EXCURSIONS. II
    Husler, J.
    Kremena, E. V.
    Piterbarg, V. I.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (03) : 513 - U208
  • [29] Cosmic mass functions from Gaussian stochastic diffusion processes
    Schuecker, P
    Böhringer, H
    Arzner, K
    Reiprich, TH
    ASTRONOMY & ASTROPHYSICS, 2001, 370 (03): : 715 - 728
  • [30] Gaussian Processes in Complex Media: New Vistas on Anomalous Diffusion
    Di Tullio, Francesco
    Paradisi, Paolo
    Spigler, Renato
    Pagnini, Gianni
    FRONTIERS IN PHYSICS, 2019, 7 (SEP)