On linear and linearized generalized semi-infinite optimization problems

被引:14
|
作者
Rückmann, JJ [1 ]
Stein, O
机构
[1] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl Math C, D-52056 Aachen, Germany
关键词
generalized semi-infinite optimization; optimality condition; linearized problem; duality; disjunctive optimization; mai-point; level set;
D O I
10.1023/A:1010972524021
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the local and global topological structure of the feasible set M of a generalized semiinfinite optimization problem. Under the assumption that the defining functions for M are affine-linear with respect to the index variable and separable with respect to the index and the state variable, M can globally be written as the finite union of certain open and closed sets. Here, it is not necessary to impose any kind of constraint qualification on the lower level problem. In fact, these sets are level sets of the lower level Lagrangian, and the open sets are generated exactly by Lagrange multiplier vectors with vanishing entry corresponding to the lower level objective function. This result gives rise to a first order necessary optimality condition for the considered generalized semi-infinite problem. Finally it is shown that the description of M by open and closed level sets of the lower level Lagrangian locally carries over to points of the so-called mai-type, where neither the linearity nor the separability assumption is satisfied.
引用
收藏
页码:191 / 208
页数:18
相关论文
共 50 条
  • [31] On optimality conditions for generalized semi-infinite programming problems
    Stein O.
    Still G.
    Journal of Optimization Theory and Applications, 2000, 104 (02) : 443 - 458
  • [32] Bilevel decision with generalized semi-infinite optimization for fuzzy mappings as lower level problems
    Liou Y.-C.
    Wu S.-Y.I.
    Yao J.-C.
    Fuzzy Optimization and Decision Making, 2005, 4 (1) : 41 - 50
  • [33] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    M. J. Cánovas
    A. Hantoute
    J. Parra
    F. J. Toledo
    Journal of Optimization Theory and Applications, 2014, 160 : 111 - 126
  • [34] GENERIC PROPERTIES IN THE LINEAR VECTOR SEMI-INFINITE OPTIMIZATION
    TODOROV, MI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1989, 42 (04): : 27 - 29
  • [35] Recent contributions to linear semi-infinite optimization: an update
    M. A. Goberna
    M. A. López
    Annals of Operations Research, 2018, 271 : 237 - 278
  • [36] Recent contributions to linear semi-infinite optimization: an update
    Goberna, M. A.
    Lopez, M. A.
    ANNALS OF OPERATIONS RESEARCH, 2018, 271 (01) : 237 - 278
  • [37] Calmness of the Argmin Mapping in Linear Semi-Infinite Optimization
    Canovas, M. J.
    Hantoute, A.
    Parra, J.
    Toledo, F. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2014, 160 (01) : 111 - 126
  • [38] Constraint qualifications in linear vector semi-infinite optimization
    Goberna, M. A.
    Guerra-Vazquez, F.
    Todorov, M. I.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2013, 227 (01) : 12 - 21
  • [39] CONTINUITY PROPERTIES IN SEMI-INFINITE PARAMETRIC LINEAR OPTIMIZATION
    COLGEN, R
    SCHNATZ, K
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1981, 3 (04) : 451 - 460
  • [40] On the stability of solutions for semi-infinite vector optimization problems
    Peng, Zai-Yun
    Peng, Jian-Wen
    Long, Xian-Jun
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 55 - 69