Accurate and efficient Monte Carlo solutions to the radiative transport equation in the spatial frequency domain

被引:27
|
作者
Gardner, Adam R. [1 ]
Venugopalan, Vasan [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Laser Microbeam & Med Program, Beckman Laser Inst, Irvine, CA 92697 USA
基金
美国国家卫生研究院;
关键词
PHOTON MIGRATION; MEDIA;
D O I
10.1364/OL.36.002269
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an approach to solving the radiative transport equation (RTE) for layered media in the spatial frequency domain (SFD) using Monte Carlo (MC) simulations. This is done by obtaining a complex photon weight from analysis of the Fourier transform of the RTE. We also develop a modified shortcut method that enables a single MC simulation to efficiently provide RTE solutions in the SFD for any number of spatial frequencies. We provide comparisons between the modified shortcut method and conventional discrete transform methods for SFD reflectance. Further results for oblique illumination illustrate the potential diagnostic utility of the SFD phase-shifts for analysis of layered media. (c) 2011 Optical Society of America
引用
收藏
页码:2269 / 2271
页数:3
相关论文
共 50 条
  • [21] Radiance Monte-Carlo for application of the Radiative Transport Equation in the inverse problem of Diffuse Optical Tomography
    Powell, Samuel
    Hochuli, Roman
    Arridge, Simon R.
    OPTICAL TOMOGRAPHY AND SPECTROSCOPY OF TISSUE XII, 2017, 10059
  • [22] The Quantization Monte Carlo method for solving radiative transport equations
    Laguzet, Laetitia
    Turinici, Gabriel
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 329
  • [23] RADIATIVE TRANSPORT IN FINITE HOMOGENEOUS CYLINDERS BY MONTE CARLO TECHNIQUE
    AVERY, LW
    HOUSE, LL
    SKUMANICH, A
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1969, 9 (04): : 519 - +
  • [24] Inverse Monte Carlo solutions for radiative transfer in inhomogeneous media
    Dunn, William L.
    1600, Elsevier Ltd (29):
  • [25] Markov Chain Monte Carlo solutions for radiative transfer problems
    von Waldenfels, W.
    Wehrse, R.
    Baschek, B.
    ASTRONOMY & ASTROPHYSICS, 2011, 525
  • [26] Markov Chain Monte Carlo solutions for radiative transfer problems
    Von Waldenfels, W.
    Wehrse, R.
    Baschek, B.
    Astronomy and Astrophysics, 2011, 525 (19):
  • [27] Monte Carlo simulations of spatial noise and Langevin equation
    Zhou, Yan
    Bao, Jingdong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2007, 47 (SUPPL. 1): : 1027 - 1030
  • [28] MONTE CARLO INTEGRATION OF ADJOINT NEUTRON TRANSPORT EQUATION
    ERIKSSON, B
    JOHANSSON, C
    LEIMDORFER, M
    KALDS, MH
    NUCLEAR SCIENCE AND ENGINEERING, 1969, 37 (03) : 410 - +
  • [29] Domain decomposition models for parallel Monte Carlo transport
    Alme, HJ
    Rodrigue, GH
    Zimmerman, GB
    JOURNAL OF SUPERCOMPUTING, 2001, 18 (01): : 5 - 23
  • [30] Domain Decomposition Models for Parallel Monte Carlo Transport
    Henry J. Alme
    Garry H. Rodrigue
    George B. Zimmerman
    The Journal of Supercomputing, 2001, 18 : 5 - 23