Generalized relative entropies in the classical limit

被引:4
|
作者
Kowalski, A. M. [1 ]
Martin, M. T. [1 ,2 ]
Plastino, A. [1 ,2 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Inst Fis, IFLP CCT Conicet, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Argentinas Natl Res Council, RA-1033 Buenos Aires, DF, Argentina
关键词
Tsallis relative entropy; Cressie-Read quantifiers; Classical limit; Time-series; WAVE-PACKET; QUANTUM; COMPLEXITY; INFORMATION; CHAOS; MODEL;
D O I
10.1016/j.physa.2014.12.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our protagonists are (i) the Cressie-Read family of divergences (characterized by the parameter gamma), (ii) Tsallis' generalized relative entropies (characterized by the q one), and, as a particular instance of both, (iii) the Kullback-Leibler (KL) relative entropy. In their normalized versions, we ascertain the equivalence between (i) and (ii). Additionally, we employ these three entropic quantifiers in order to provide a statistical investigation of the classical limit of a semiclassical model, whose properties are well known from a purely dynamic viewpoint. This places us in a good position to assess the appropriateness of our statistical quantifiers for describing involved systems. We compare the behaviour of (i), (ii), and (iii) as one proceeds towards the classical limit. We determine optimal ranges for gamma and/or q. It is shown the Tsallis-quantifier is better than KL's for 1.5 < q < 2.5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [21] Quantum uncertainty relations of two generalized quantum relative entropies of coherence
    Zhang, FuGang
    Li, YongMing
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (08)
  • [22] Quantum uncertainty relations of two generalized quantum relative entropies of coherence
    FuGang Zhang
    YongMing Li
    Science China(Physics,Mechanics & Astronomy), 2018, (08) : 12 - 20
  • [23] Quantum uncertainty relations of two generalized quantum relative entropies of coherence
    FuGang Zhang
    YongMing Li
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [24] GENERALIZED ENTROPIES
    Dupuis, F.
    Kraemer, L.
    Faist, P.
    Renes, J. M.
    Renner, R.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 134 - 153
  • [25] Generalized entropies
    Verbitskii, EA
    Takens, F
    MATHEMATICAL NOTES, 1998, 63 (1-2) : 112 - 115
  • [26] Coherence monotones of quantum channels based on two generalized quantum relative entropies
    Fan, Jiaorui
    Wu, Zhaoqi
    Fei, Shao-Ming
    LASER PHYSICS LETTERS, 2023, 20 (10)
  • [27] ON APPROXIMATION OF RELATIVE ENTROPIES
    Meson, Alejandro
    Vericat, Fernando
    JOURNAL OF DYNAMICAL SYSTEMS AND GEOMETRIC THEORIES, 2023, 21 (01) : 1 - 14
  • [28] RELATIVE OPERATOR ENTROPIES AND TSALLIS RELATIVE OPERATOR ENTROPIES IN JB-ALGEBRAS
    Wang, Shuzhou
    Wang, Zhenhua
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (03) : 1073 - 1087
  • [29] Reverse inequalities involving two relative operator entropies and two relative entropies
    Furuta, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 : 24 - 30
  • [30] IRREVERSIBILITY AND GENERALIZED ENTROPIES
    RAMSHAW, JD
    PHYSICS LETTERS A, 1993, 175 (3-4) : 171 - 172