Generalized relative entropies in the classical limit

被引:4
|
作者
Kowalski, A. M. [1 ]
Martin, M. T. [1 ,2 ]
Plastino, A. [1 ,2 ]
机构
[1] Univ Nacl La Plata, Fac Ciencias Exactas, Inst Fis, IFLP CCT Conicet, RA-1900 La Plata, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Argentinas Natl Res Council, RA-1033 Buenos Aires, DF, Argentina
关键词
Tsallis relative entropy; Cressie-Read quantifiers; Classical limit; Time-series; WAVE-PACKET; QUANTUM; COMPLEXITY; INFORMATION; CHAOS; MODEL;
D O I
10.1016/j.physa.2014.12.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our protagonists are (i) the Cressie-Read family of divergences (characterized by the parameter gamma), (ii) Tsallis' generalized relative entropies (characterized by the q one), and, as a particular instance of both, (iii) the Kullback-Leibler (KL) relative entropy. In their normalized versions, we ascertain the equivalence between (i) and (ii). Additionally, we employ these three entropic quantifiers in order to provide a statistical investigation of the classical limit of a semiclassical model, whose properties are well known from a purely dynamic viewpoint. This places us in a good position to assess the appropriateness of our statistical quantifiers for describing involved systems. We compare the behaviour of (i), (ii), and (iii) as one proceeds towards the classical limit. We determine optimal ranges for gamma and/or q. It is shown the Tsallis-quantifier is better than KL's for 1.5 < q < 2.5. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [1] Generalized relative entropies and the capacity of classical-quantum channels
    Mosonyi, Milan
    Datta, Nilanjana
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (07)
  • [2] Generalized-generalized entropies and limit distributions
    Thurner, Stefan
    Hanel, Rudolf
    BRAZILIAN JOURNAL OF PHYSICS, 2009, 39 (2A) : 413 - 416
  • [3] Classical limit of quantum dynamical entropies
    Benatti, F
    Cappellini, V
    De Cock, M
    Fannes, M
    Vanpeteghem, D
    REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (08) : 847 - 875
  • [4] BOUNDS OF GENERALIZED RELATIVE OPERATOR ENTROPIES
    Nikoufar, Ismail
    Alinejad, Mehdi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1067 - 1078
  • [5] Generalized relative entropies and stochastic representation
    Constantin, Peter
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [6] Displacement convexity of generalized relative entropies
    Ohta, Shin-ichi
    Takatsu, Asuka
    ADVANCES IN MATHEMATICS, 2011, 228 (03) : 1742 - 1787
  • [7] A survey on the classical limit of quantum dynamical entropies
    Cappellini, V.
    ACTA PHYSICA POLONICA A, 2007, 112 (04) : 589 - 605
  • [8] Quantum and Classical Ergotropy from Relative Entropies
    Sone, Akira
    Deffner, Sebastian
    ENTROPY, 2021, 23 (09)
  • [9] Canonical quantization of classical systems with generalized entropies
    Scarfone, AM
    REPORTS ON MATHEMATICAL PHYSICS, 2005, 55 (02) : 169 - 177
  • [10] Generalized entropies in quantum and classical statistical theories
    Portesi, M.
    Holik, F.
    Lamberti, P. W.
    Bosyk, G. M.
    Bellomo, G.
    Zozor, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (3-4): : 335 - 344