Degeneration of curves on some polarized toric surfaces

被引:1
|
作者
Christ, Karl [1 ,2 ]
He, Xiang [3 ,4 ]
Tyomkin, Ilya [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
[2] Leibniz Univ Hannover, Inst Algebra Geometry, Welfengarten 1, D-30167 Hannover, Germany
[3] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
[4] Tsinghua Univ, Yau Math Sci Ctr, Ningzhai 100084, Peoples R China
来源
基金
以色列科学基金会; 欧洲研究理事会;
关键词
TROPICAL CURVES; LINEAR-SYSTEMS; GEOMETRY;
D O I
10.1515/crelle-2022-0006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We address the following question: Given a polarized toric surface (S, L) and a general integral curve C of geometric genus g in the linear system vertical bar L vertical bar, do there exist degenerations of C in vertical bar L vertical bar to general integral curves of smaller geometric genera? We give an affirmative answer to this question for surfaces associated to h-transverse polygons, provided that the characteristic of the ground field is large enough. We give examples of surfaces in small characteristic, for which the answer to the question is negative. In case the answer is affirmative, we deduce that a general curve C as above is nodal. In characteristic 0, we use the result to show the irreducibility of Severi varieties of a large class of polarized tone surfaces with h-transverse polygon.
引用
收藏
页码:197 / 240
页数:44
相关论文
共 50 条
  • [41] On some classical methods to improve algebraic curves and surfaces
    Nobile, A
    GEOMETRIAE DEDICATA, 2000, 80 (1-3) : 1 - 27
  • [42] The Nekrasov Conjecture for Toric Surfaces
    Elizabeth Gasparim
    Chiu-Chu Melissa Liu
    Communications in Mathematical Physics, 2010, 293 : 661 - 700
  • [43] Crystal melting on toric surfaces
    Cirafici, Michele
    Kashani-Poor, Amir-Kian
    Szabo, Richard J.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2199 - 2218
  • [44] Jet schemes of toric surfaces
    Mourtada, Hussein
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 563 - 566
  • [45] Applications of toric systems on surfaces
    Zhang, Shizhuo
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (03) : 1139 - 1160
  • [46] Toric Surfaces with Reflection Symmetries
    Jongbaek Song
    Proceedings of the Steklov Institute of Mathematics, 2022, 318 : 161 - 174
  • [47] Toric Surfaces with Reflection Symmetries
    Song, Jongbaek
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 318 (01) : 161 - 174
  • [48] Severi degrees on toric surfaces
    Liu, Fu
    Osserman, Brian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 739 : 121 - 158
  • [49] The Nekrasov Conjecture for Toric Surfaces
    Gasparim, Elizabeth
    Liu, Chiu-Chu Melissa
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (03) : 661 - 700
  • [50] Deformations of smooth toric surfaces
    Nathan Owen Ilten
    Manuscripta Mathematica, 2011, 134 : 123 - 137