Proliferation of de Sitter space

被引:36
|
作者
Bousso, R [1 ]
机构
[1] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
来源
PHYSICAL REVIEW D | 1998年 / 58卷 / 08期
关键词
D O I
10.1103/PhysRevD.58.083511
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
I show that de Sitter space disintegrates into an infinite number of copies of itself. This occurs iteratively through a quantum process involving two types of topology change. First a handle is created semiclassically, on which multiple black hole horizons form. Then the black holes evaporate and disappear, splitting the spatial hypersurfaces into large parts. Applied to cosmology, this process leads to the production of a large or infinite number of universes in most models of inflation and yields a new picture of global structure. [S0556-2821(98)05318-1].
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Fuzzy de Sitter space
    Buric, Maja
    Latas, Dusko
    Nenadovic, Luka
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2018, 78 (11):
  • [22] Spannors on de Sitter space
    Moylan, P
    [J]. 5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 106 - 108
  • [23] Propagators in de Sitter space
    Fukuma, Masafumi
    Sugishita, Sotaro
    Sakatani, Yuho
    [J]. PHYSICAL REVIEW D, 2013, 88 (02)
  • [24] The trouble with de Sitter space
    Goheer, N
    Kleban, M
    Susskind, L
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2003, (07):
  • [25] The clash between de Sitter and anti-de Sitter space
    Firouzjahi, H
    Leblond, F
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2003, (06):
  • [26] Backlund theorems in three-dimensional de Sitter space and anti-de Sitter space
    Zuo, DF
    Chen, Q
    Cheng, Y
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2002, 44 (2-3) : 279 - 298
  • [27] SPACELIKE HYPERSURFACES WITH CONSTANT S OR K IN DE SITTER SPACE OR ANTI-DE SITTER SPACE
    Shu, S.
    Chen, J.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (04): : 835 - 855
  • [28] Isoparametric Surfaces in 3-dimensional De Sitter Space and Anti-de Sitter Space
    李梅
    赵永波
    [J]. Communications in Mathematical Research, 2003, (03) : 259 - 266
  • [29] Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling
    Zhang Bao-Cheng
    Cai Qing-Yu
    Zhan Ming-Sheng
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (02)
  • [30] The ,?(?)2 Model on de Sitter Space
    Barata, Joao C. A.
    Jakel, Christian D.
    Mund, Jens
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 281 (1389) : I - +