A Survey on Deep Learning for Precision Oncology

被引:5
|
作者
Wang, Ching-Wei [1 ,2 ]
Khalil, Muhammad-Adil [2 ]
Firdi, Nabila Puspita [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Grad Inst Biomed Engn, Taipei 106335, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Grad Inst Appl Sci & Technol, Taipei 106335, Taiwan
关键词
deep learning; precision oncology; cancer treatment; treatment planning; therapy; review; CONVOLUTIONAL NEURAL-NETWORK; SYNTHETIC-CT GENERATION; CLINICAL TARGET VOLUME; RADIATION-THERAPY; DOSE PREDICTION; TREATMENT RESPONSE; PROSTATE-CANCER; LUNG-CANCER; NEOADJUVANT CHEMOTHERAPY; AUTOMATIC SEGMENTATION;
D O I
10.3390/diagnostics12061489
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Precision oncology, which ensures optimized cancer treatment tailored to the unique biology of a patient's disease, has rapidly developed and is of great clinical importance. Deep learning has become the main method for precision oncology. This paper summarizes the recent deep-learning approaches relevant to precision oncology and reviews over 150 articles within the last six years. First, we survey the deep-learning approaches categorized by various precision oncology tasks, including the estimation of dose distribution for treatment planning, survival analysis and risk estimation after treatment, prediction of treatment response, and patient selection for treatment planning. Secondly, we provide an overview of the studies per anatomical area, including the brain, bladder, breast, bone, cervix, esophagus, gastric, head and neck, kidneys, liver, lung, pancreas, pelvis, prostate, and rectum. Finally, we highlight the challenges and discuss potential solutions for future research directions.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] A federated learning system for precision oncology in Europe: DigiONE
    Piers Mahon
    Ismini Chatzitheofilou
    Andre Dekker
    Xosé Fernández
    Geoff Hall
    Aslaug Helland
    Alberto Traverso
    Cedric Van Marcke
    Janne Vehreschild
    Gennaro Ciliberto
    Giovanni Tonon
    Nature Medicine, 2024, 30 : 334 - 337
  • [22] Prototyping a precision oncology 3.0 rapid learning platform
    Sweetnam, Connor
    Mocellin, Simone
    Krauthammer, Michael
    Knopf, Nathaniel
    Baertsch, Robert
    Shrager, Jeff
    BMC BIOINFORMATICS, 2018, 19 : 341
  • [23] A federated learning system for precision oncology in Europe: DigiONE
    Mahon, Piers
    Chatzitheofilou, Ismini
    Dekker, Andre
    Fernandez, Xose
    Hall, Geoff
    Helland, Aslaug
    Traverso, Alberto
    Van Marcke, Cedric
    Vehreschild, Janne
    Ciliberto, Gennaro
    Tonon, Giovanni
    NATURE MEDICINE, 2024, 30 (02) : 334 - 337
  • [24] Prototyping a precision oncology 3.0 rapid learning platform
    Connor Sweetnam
    Simone Mocellin
    Michael Krauthammer
    Nathaniel Knopf
    Robert Baertsch
    Jeff Shrager
    BMC Bioinformatics, 19
  • [25] DeepTI: A deep learning-based framework decoding tumor-immune interactions for precision immunotherapy in oncology
    Ma, Jianfei
    Jin, Yan
    Tang, Yuanyuan
    Li, Lijun
    SLAS DISCOVERY, 2022, 27 (02) : 121 - 127
  • [26] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Morales, Eduardo F.
    Murrieta-Cid, Rafael
    Becerra, Israel
    Esquivel-Basaldua, Marco A.
    INTELLIGENT SERVICE ROBOTICS, 2021, 14 (05) : 773 - 805
  • [27] A survey on deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning
    Eduardo F. Morales
    Rafael Murrieta-Cid
    Israel Becerra
    Marco A. Esquivel-Basaldua
    Intelligent Service Robotics, 2021, 14 : 773 - 805
  • [28] A survey on quantum deep learning
    Wu, Huaiguang
    Zhang, Jiahui
    Wang, Lijie
    Li, Daiyi
    Kong, Delong
    Han, Yucan
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [29] Survey on Blockchain and Deep Learning
    Zhang, Yizhuo
    Liu, Yiwei
    Chen, Chi-Hua
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1989 - 1994
  • [30] A survey: evolutionary deep learning
    Yifan Li
    Jing Liu
    Soft Computing, 2023, 27 : 9401 - 9423