Oxygen ion mobility and conductivity prediction in cubic yttria-stabilized zirconia single crystals

被引:30
|
作者
Asadikiya, Mohammad [1 ,2 ]
Zhong, Yu [1 ,2 ,3 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Florida Int Univ, Ctr Study Matter Extreme Condit CeSMEC, Miami, FL 33199 USA
[3] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
关键词
PHASE-TRANSITION TEMPERATURE; ZRO2-Y2O3; SOLID-SOLUTIONS; ELECTRICAL-CONDUCTIVITY; ELECTRONIC CONDUCTIVITY; SIMULATION; DIFFUSION; TRANSPORT; ELECTROLYTES; DEFECTS;
D O I
10.1007/s10853-017-1625-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The CALPHAD (calculation of phase diagrams) approach is applied to predict the oxygen vacancy concentration at different temperatures and yttria concentrations of cubic yttria-stabilized zirconia (c-YSZ) single crystals. The quantitative mobility diagrams of oxygen ions are developed in a wide range of temperature and yttria concentration, using the experimental data from the literature. Therefore, the ionic conductivity of c-YSZ single crystals is predicted, using the mobility and oxygen vacancy concentration. Particularly, the conductivity of low-yttria c-YSZ is predicted by applying the CALPHAD approach for the first time. The conductivity prediction of low-yttria c-YSZ can be crucial, since new applications may be designed based on this new information. The activation energy and pre-exponential factor diagrams versus yttria concentration are also plotted.
引用
收藏
页码:1699 / 1709
页数:11
相关论文
共 50 条
  • [21] Industrial growth of yttria-stabilized cubic Zirconia crystals by skull melting process
    Xu Jiayue
    Lei Xiuyun
    Jiang Xin
    He Qingbo
    Fang Yongzheng
    Zhang Daobiao
    He Xuemei
    [J]. JOURNAL OF RARE EARTHS, 2009, 27 (06) : 971 - 974
  • [22] Dielectric Relaxation in Yttria-stabilized Zirconia Crystals
    Wang, Wencheng
    Zhang, Peng
    Li, Xiufeng
    Li, Ping'an
    Zhang, Hao
    Zhan, Lijuan
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON ELECTRICAL INSULATING MATERIALS (ISEIM 2020), 2020, : 210 - 212
  • [23] FLUX GROWTH OF YTTRIA-STABILIZED ZIRCONIA CRYSTALS
    YOKOYAMA, M
    OTA, T
    YAMAI, I
    [J]. JOURNAL OF CRYSTAL GROWTH, 1986, 75 (03) : 630 - 632
  • [24] Mechanical properties of yttria-stabilized zirconia crystals
    Shchurov, AF
    Perevoshchikov, VA
    [J]. INORGANIC MATERIALS, 1997, 33 (09): : 920 - 923
  • [25] LUMINESCENCE OF POLYCRYSTALLINE CUBIC AND TETRAGONAL YTTRIA-STABILIZED ZIRCONIA
    PAJE, SE
    LLOPIS, J
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1994, 55 (08) : 671 - 676
  • [26] DIFFUSE-SCATTERING IN YTTRIA-STABILIZED CUBIC ZIRCONIA
    WELBERRY, TR
    WITHERS, RL
    THOMPSON, JG
    BUTLER, BD
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1992, 100 (01) : 71 - 89
  • [27] The luminescence of holmium doped cubic yttria-stabilized zirconia
    Gutzov, S
    Assmus, W
    [J]. JOURNAL OF MATERIALS SCIENCE LETTERS, 2000, 19 (04) : 275 - 277
  • [28] Electro-Sintering of Yttria-Stabilized Cubic Zirconia
    Kim, Seung-Wan
    Kang, Suk-Joong L.
    Chen, I-Wei
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (05) : 1398 - 1406
  • [29] Revisiting the lattice dynamics of cubic yttria-stabilized zirconia
    Turner, Shelby R.
    Pailhes, Stephane
    Ben-Mahfoud, Leila
    de Boissieu, Marc
    Bourdarot, Frederic
    Schober, Helmut
    Sidis, Yvan
    Castellan, John-Paul
    Piovano, Andrea
    Ivanov, Alexandre
    Giordano, Valentina M.
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (11)
  • [30] Superplasticity in cubic yttria-stabilized zirconia with intergranular silica
    Sharif, AA
    Mecartney, ML
    [J]. ACTA MATERIALIA, 2003, 51 (06) : 1633 - 1639