Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection

被引:35
|
作者
Martin-Abadal, Miguel [1 ]
Ruiz-Frau, Ana [2 ]
Hinz, Hilmar [2 ]
Gonzalez-Cid, Yolanda [1 ]
机构
[1] Univ Illes Balears, Syst Robot & Vis Grp SRV, Dept Math & Comp Sci, Palma De Mallorca 07122, Spain
[2] UIB, Inst Mediterrani Estudis Avancats, CSIC, Dept Marine Ecosyst Dynam,IMEDEA, Esporles 07190, Spain
关键词
deep learning; object detection; jellyfish quantification; jellyfish monitoring; MARINE ECOSYSTEMS; NEURAL-NETWORK; CLIMATE-CHANGE; IMPACTS; FISHERIES;
D O I
10.3390/s20061708
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
During the past decades, the composition and distribution of marine species have changed due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is of high relevance to assess the environmental status and evaluate the effectiveness of management measures. In particular, recent studies point to a rise of jellyfish populations on a global scale, negatively affecting diverse marine sectors like commercial fishing or the tourism industry. Past monitoring efforts using underwater video observations tended to be time-consuming and costly due to human-based data processing. In this paper, we present Jellytoring, a system to automatically detect and quantify different species of jellyfish based on a deep object detection neural network, allowing us to automatically record jellyfish presence during long periods of time. Jellytoring demonstrates outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%; and also on the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish on a real-time processed video sequence up to a 93.8% of its duration. The results of this study are encouraging and provide the means towards a efficient way to monitor jellyfish, which can be used for the development of a jellyfish early-warning system, providing highly valuable information for marine biologists and contributing to the reduction of jellyfish impacts on humans.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Hidden Challenge in Deep-Learning Real-Time Object Detection on Edge Devices
    Nicolas, Marcus F.
    Megherbi, Dalila B.
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 547 - 551
  • [42] Real-Time Anomaly Detection for Water Quality Sensor Monitoring Based on Multivariate Deep Learning Technique
    El-Shafeiy, Engy
    Alsabaan, Maazen
    Ibrahem, Mohamed I.
    Elwahsh, Haitham
    SENSORS, 2023, 23 (20)
  • [43] Real-time defect detection network for polarizer based on deep learning
    Ruizhen Liu
    Zhiyi Sun
    Anhong Wang
    Kai Yang
    Yin Wang
    Qianlai Sun
    Journal of Intelligent Manufacturing, 2020, 31 : 1813 - 1823
  • [44] Research on Real-time Detection of Stacked Objects Based on Deep Learning
    Geng, Kaiguo
    Qiao, Jinwei
    Liu, Na
    Yang, Zhi
    Zhang, Rongmin
    Li, Huiling
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2023, 109 (04)
  • [45] A Deep Learning-Based Real-time Seizure Detection System
    Shawki, N.
    Elseify, T.
    Cap, T.
    Shah, V
    Obeid, I
    Picone, J.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [46] Research on Real-Time Vehicle Detection Algorithm Based on Deep Learning
    Yang, Wei
    Zhang, Ji
    Zhang, Zhongbao
    Wang, Hongyuan
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT IV, 2018, 11259 : 126 - 137
  • [47] A Deep Learning-based Approach for Real-time Facemask Detection
    Boulila, Wadii
    Alzahem, Ayyub
    Almoudi, Aseel
    Afifi, Muhanad
    Alturki, Ibrahim
    Driss, Maha
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1478 - 1481
  • [48] Real-time defect detection network for polarizer based on deep learning
    Liu, Ruizhen
    Sun, Zhiyi
    Wang, Anhong
    Yang, Kai
    Wang, Yin
    Sun, Qianlai
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (08) : 1813 - 1823
  • [49] Real-Time Network Intrusion Detection System Based on Deep Learning
    Dong, Yuansheng
    Wang, Rong
    He, Juan
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 1 - 4
  • [50] ROBUST REAL-TIME OBJECT DETECTION BASED ON DEEP LEARNING FOR VERY HIGH RESOLUTION REMOTE SENSING IMAGES
    Zhao, Yiming
    Zhao, Jinzheng
    Zhao, Chunyu
    Xiong, Weiyu
    Li, Qingli
    Yang, Junli
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 1314 - 1317