Analog codes on graphs

被引:0
|
作者
Santhi, N [1 ]
Vardy, A [1 ]
机构
[1] Univ Calif San Diego, Dept Elect Engn, San Diego, CA 92103 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many channels (e.g., the broadcast channels) require combined coding and modulation to approach capacity. Furthermore, it is often desirable to have a graceful degradation of information rate with decreasing SNR. In these situations, codes over large alphabets are advantageous. In this work, we consider analog codes, whose alphabet is the real line R Traditionally, decoding analog codes has been difficult. Herein, we introduce capacity-approaching codes defined on graphs along with a novel superposition strategy that admits infinitely many resolutions. This superposition strategy makes it possible to derive an efficient iterative decoder for our analog codes, based on the sum-product algorithm. The resulting coding scheme performs close to the Shannon capacity of a band-limited AWGN channel, over a wide range of SNRs. Furthermore, we construct bandwidth efficient codes by truncating analog codes, and find that these perform well in comparison to MPSK cutoff rates.
引用
收藏
页码:13 / 13
页数:1
相关论文
共 50 条
  • [1] Analog Decoding of Tailbiting Convolutional Codes on Graphs
    Zahabi, M. R.
    Meghdadi, V.
    Meghdadi, H.
    Cances, J. P.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS 2008), 2008, : 546 - 550
  • [2] Codes and graphs
    Shokrollahi, MA
    [J]. STACS 2000: 17TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, 2000, 1770 : 1 - 12
  • [3] ON GRAPHS AND CODES
    CURTIS, RT
    [J]. GEOMETRIAE DEDICATA, 1992, 41 (02) : 127 - 134
  • [4] Codes and decoding on graphs
    Shankar, P
    [J]. CURRENT SCIENCE, 2003, 85 (07): : 980 - 988
  • [5] STRUCTURED CODES OF GRAPHS
    Alon, Noga
    Gujgiczer, Anna
    Korner, Janos
    Milojevic, Aleksa
    Simonyi, Gabor
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (01) : 379 - 403
  • [6] Expander graphs and codes
    Shum, KW
    Blake, IF
    [J]. ALGEBRAIC CODING THEORY AND INFORMATION THEORY, 2005, 68 : 57 - 68
  • [7] Codes on Graphs: Fundamentals
    Forney, G. David, Jr.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (10) : 5809 - 5826
  • [8] Regenerating codes on graphs
    Patra, Adway
    Barg, Alexander
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 2197 - 2202
  • [9] Codes defined on graphs
    Kschischang, FR
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2003, 41 (08) : 118 - 125
  • [10] The graphs of projective codes
    Kwiatkowski, Mariusz
    Pankov, Mark
    Pasini, Antonio
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 15 - 29