Satellite passive microwave remote sensing for monitoring global land surface phenology

被引:212
|
作者
Jones, Matthew O. [1 ,2 ]
Jones, Lucas A. [1 ,2 ]
Kimball, John S. [1 ,2 ]
McDonald, Kyle C. [3 ]
机构
[1] Univ Montana, Flathead Lake Biol Stn, Polson, MT 59860 USA
[2] Univ Montana, Numer Terradynam Simulat Grp, Missoula, MT 59812 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
AMSR-E; MODIS; Phenology; Optical depth; Vegetation index; NDVI; EVI; LAI; Growing season; SOIL-MOISTURE; VEGETATION INDEXES; SPRING PHENOLOGY; LEAF-AREA; EMISSION; BIOMASS; METHODOLOGY; TEMPERATURE; RETRIEVAL; MODEL;
D O I
10.1016/j.rse.2010.12.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Vegetation phenology characterizes seasonal life-cycle events that influence the carbon cycle and land-atmosphere water and energy exchange. We analyzed global phenology cycles over a six year record (2003-2008) using satellite passive microwave remote sensing based Vegetation Optical Depth (VOD) retrievals derived from daily time series brightness temperature (T-b) measurements from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and other ancillary data inputs. The VOD parameter derives vegetation canopy attenuation at a given microwave frequency (18.7 GHz) and varies with canopy height, density, structure and water content. An error sensitivity analysis indicates that the retrieval algorithm can resolve the VOD seasonal cycle over a majority of global vegetated land areas. The VOD results corresponded favorably (p < 0.01) with vegetation indices (VIs) and leaf area index (lid) information from satellite optical-infrared (MODIS) remote sensing, and phenology cycles determined from a simple bioclimatic growing season index (GSI) for over 82% of the global domain. Lower biomass land cover classes (e.g. savannas) show the highest correlations (R=0.66), with reduced correspondence at higher biomass levels (0.03 < R < 0.51) and higher correlations for homogeneous land cover areas (0.41 < R < 0.83). The VOD results display a unique end-of-season signal relative to VI and LAI series, and may reflect microwave sensitivity to the timing of vegetation biomass depletion (e.g. leaf abscission) and associated changes in canopy water content (e.g. dormancy preparation). The VOD parameter is independent of and synergistic with optical-infrared remote sensing based vegetation metrics, and contributes to a more comprehensive view of land surface phenology. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1102 / 1114
页数:13
相关论文
共 50 条
  • [41] A method for surface roughness parameter estimation in passive microwave remote sensing
    Xingming Zheng
    Kai Zhao
    [J]. Chinese Geographical Science, 2010, 20 : 345 - 352
  • [42] A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing
    Zheng Xingming
    Zhao Kai
    [J]. CHINESE GEOGRAPHICAL SCIENCE, 2010, 20 (04) : 345 - 352
  • [43] A Method for Surface Roughness Parameter Estimation in Passive Microwave Remote Sensing
    ZHENG Xingming1
    2.Graduate University of the Chinese Academy of Sciences
    [J]. Chinese Geographical Science, 2010, 20 (04) : 345 - 352
  • [44] SATELLITE MICROWAVE REMOTE SENSING OF FLOODING
    姚展予
    李万彪
    高慧琳
    朱元竞
    赵柏林
    张强
    [J]. Journal of Meteorological Research, 2004, (01) : 95 - 104
  • [45] Surface parameter retrieval at global scales by microwave remote sensing
    Owe, M
    De Jeu, R
    [J]. REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY IV, 2003, 4879 : 202 - 210
  • [46] Global Rainstorm Disaster Risk Monitoring Based on Satellite Remote Sensing
    Suling REN
    Xiuzhen HAN
    Jun YANG
    Shihao TANG
    Yang ZHANG
    Tianchan SHAN
    Cheng LIU
    [J]. Journal of Meteorological Research, 2022, (01) : 193 - 207
  • [47] Global Rainstorm Disaster Risk Monitoring Based on Satellite Remote Sensing
    Ren, Suling
    Han, Xiuzhen
    Yang, Jun
    Tang, Shihao
    Zhang, Yang
    Shan, Tianchan
    Liu, Cheng
    [J]. JOURNAL OF METEOROLOGICAL RESEARCH, 2022, 36 (01) : 193 - 207
  • [48] Land Surface Model Calibration Using Satellite Remote Sensing Data
    Khaki, Mehdi
    [J]. SENSORS, 2023, 23 (04)
  • [49] Satellite remote sensing of land surface temperature for the Canary Islands region
    Hernandez, PA
    Arbelo, M
    Herrera, F
    Exposito, FJ
    Diaz, JP
    [J]. FUTURE TRENDS IN REMOTE SENSING, 1998, : 113 - +
  • [50] Global monitoring of large reservoir storage from satellite remote sensing
    Gao, Huilin
    Birkett, Charon
    Lettenmaier, Dennis P.
    [J]. WATER RESOURCES RESEARCH, 2012, 48