Measurement and Monte Carlo modeling of the spatial response of scintillation screens

被引:3
|
作者
Pistrui-Maximean, S. A. [1 ]
Letang, J. M.
Freud, N.
Koch, A.
Walenta, A. H.
Montarou, G.
Babot, D.
机构
[1] Inst Natl Sci Appl, CNDRI, NDT Lab, F-69621 Villeurbanne, France
[2] Thales Electron Devices, F-38430 Moirans, France
[3] Univ Siegen, FB Phys, Detectors & Elect Dept, D-57068 Siegen, Germany
[4] Univ Blaise Pascal, Corpuscular Phys Lab, F-63177 Aubiere, France
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2007年 / 581卷 / 03期
关键词
phosphor screen; X-ray imaging; modulation transfer function (MTF); slit method; Monte Carlo simulation; geant4;
D O I
10.1016/j.nima.2007.07.153
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this article, we propose a detailed protocol to carry out measurements of the spatial response of scintillation screens and to assess the agreement with simulated results. The experimental measurements have been carried out using a practical implementation of the slit method. A Monte Carlo simulation model of scintillator screens, implemented with the toolkit Geant4, has been used to study the influence of the acquisition setup parameters and to compare with the experimental results. An algorithm of global stochastic optimization based on a localized random search method has been implemented to adjust the optical parameters (optical scattering and absorption coefficients). The algorithm has been tested for different X-ray tube voltages (40, 70 and 100 kV). A satisfactory convergence between the results simulated with the optimized model and the experimental measurements is obtained. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 50 条
  • [21] Monte Carlo Modeling of VLWIR HgCdTe Interdigitated Pixel Response
    D'Souza, A. I.
    Stapelbroek, M. G.
    Wijewarnasuriya, P. S.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (07) : 986 - 991
  • [22] Monte Carlo Simulations of scintillation detectors for the use as dosemeters
    Alegria, N.
    Kessler, P.
    Gabay, K. -L.
    Legarda, F.
    Neumaier, S.
    Roettger, A.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (09)
  • [23] Optix: A Monte Carlo scintillation light transport code
    Safari, M. J.
    Afarideh, H.
    Ghal-Eh, N.
    Davani, F. Abbasi
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 737 : 101 - 106
  • [24] Modeling of linewidth measurement in SEMs using advanced Monte Carlo software
    Babin, S.
    Borisov, S.
    Ivanchikov, A.
    Ruzavin, I.
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XX, PTS 1 AND 2, 2006, 6152
  • [25] MONTE-CARLO CALCULATION OF CLAD NAI(TI) SCINTILLATION CRYSTAL RESPONSE TO GAMMA PHOTONS
    STEYN, JJ
    HUANG, R
    HARRIS, DW
    NUCLEAR INSTRUMENTS & METHODS, 1973, 107 (03): : 465 - 475
  • [26] Monte Carlo study of the energy and angular dependence of the response of plastic scintillation detectors in photon beams
    Wang, Lille L. W.
    Klein, David
    Beddar, A. Sam
    MEDICAL PHYSICS, 2010, 37 (10) : 5279 - 5286
  • [27] MONTE-CARLO PROGRAM FOR EVALUATING RESPONSE OF A SCINTILLATION COUNTER TO MONOENERGETIC GAMMA-RAYS
    BEATTIE, RJD
    BYRNE, J
    NUCLEAR INSTRUMENTS & METHODS, 1972, 104 (01): : 163 - &
  • [28] Monte Carlo modeling of KAMINI
    Mohapatra, DK
    Sunny, CS
    Mohanakrishnan, P
    Subbaiah, KV
    ANNALS OF NUCLEAR ENERGY, 2004, 31 (18) : 2185 - 2194
  • [29] Monte Carlo simulation of a plastic scintillator response function in β-γ coincidence measurement
    Ashrafi, S.
    Etesami, S. M.
    RADIATION MEASUREMENTS, 2008, 43 (9-10) : 1511 - 1514
  • [30] Reverse Monte Carlo modeling
    McGreevy, RL
    JOURNAL DE PHYSIQUE IV, 2003, 111 : 347 - 371