Immunosuppression may have an important impact on early graft coronary endothelial injury. We investigated functional and morphologic coronary alterations, myocardial expression, and cardiac release of possible mediators of allograft vasculopathy within 6 months after cardiac transplantation with respect to different immunosuppressive regimens. Epicardial and microvascular endothelium-dependent and endothelium-independent vasomotor function and epicardial intimal thickening were measured in 8 transplant recipients treated with cyclosporin A (CyA), azathioprine, and prednisone (group 1), 9 transplant recipients treated with tacrolimus (TKL), azathioprine, and prednisone (group 2), and 14 patients treated with TKL, mycophenolate mofetil (MMF), and prednisone (group 3). The gene expressions of inducible and endothelial nitric oxide synthase (iNOS and eNOS), endothelin-1, prostacyclinsynthase, and thromboxansynthase were analyzed in endomyocardial biopsy specimens using semiquantitative reverse transcription polymerase chain reaction. Transcardiac cytokine release, endothelin-1, and nitrate-release were determined from plasma samples. Epicardial endothelial dysfunction (vasoconstriction to acetylcholine > 10%) and microvascular smooth muscle cell dysfunction (flow velocity increase to adenosine and nifedipine < 2.0) were enhanced in heart transplant recipients immunosuppressed with TKL, azathioprine, and prednisone. The prevalence of epicardial dysfunction was 78% in group 2 versus 44% and 46% in group 1 and 3 (p < 0.05), respectively. The prevalence of microvascular dysfunction was 56% in group 2 versus 13% and 7% in group 1 and a (p < 0.02), respectively. Coronary vasomotor dysfunction was associated with increased myocardial iNOS expression (p < 0.05), decreased eNOS expression (p < 0.05), and enhanced cardiac immunoreactive interleukin-6 (p < 0.01). Coronary intimal thickening was not different between the groups. The combination of TKL and MMF appears to be superior to TKL and azathioprine (and comparable to CyA and azathioprine) concerning preservation of early coronary vasomotor function, eNOS expression, iNOS suppression as well as cardiac interleukin-6 release. This may have an important impact on subsequent development of transplant coronary atherosclerosis.