Coordinate transformation by radial basis function neural network

被引:0
|
作者
Gullu, Mevlut [1 ]
机构
[1] Kocatepe Univ Afyonkarahisar, Fac Engn, Dept Geodesy & Photogrammetry, TR-03200 Afyon, Turkey
来源
SCIENTIFIC RESEARCH AND ESSAYS | 2010年 / 5卷 / 20期
关键词
Coordinate transformation; artificial neural network; radial basis function; affine transformation;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Turkish National Geodetic Network (TNGN) datum (ED50) was changed to the Turkish National Fundamental GPS Network (TNFGN) datum (WGS84) in 2001 in parallel with the increasing use of GPS technology. Due to this reference frame change it became necessary to transform the existing coordinate information between ED50 and WGS84. The two-dimensional (2D) affine transformation is widely used for coordinate transformation. The objective of this study is proposing a radial basis function neural network (RBFNN) that has been more widely applied in function approximation as an alternative coordinate transformation method. 2D affine transformation (Affine) method and RBFNN are evaluated over a study area, in terms of the root mean square error (RMSE). The results showed that RBFNN transformed the plane coordinates (Y, X) of the check points with a better accuracy (+/- 0.011 m, +/- 0.013 m, respectively) than Affine method and pointed out that RBFNN can be used for coordinate transformation.
引用
收藏
页码:3141 / 3146
页数:6
相关论文
共 50 条
  • [31] Hardware implementation of a combined radial basis function neural network
    Liang, Yan
    Jin, Dongming
    [J]. Qinghua Daxue Xuebao/Journal of Tsinghua University, 2009, 49 (10): : 1692 - 1695
  • [32] The Study of Electrocardiograph Based on Radial Basis Function Neural Network
    Yang Guangying
    Chen Yue
    [J]. 2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 143 - 145
  • [33] A clustering algorithm for radial basis function neural network initialization
    Wang, Di
    Zeng, Xiao-Jun
    Keane, John A.
    [J]. NEUROCOMPUTING, 2012, 77 (01) : 144 - 155
  • [34] Hardware Radial Basis Function Neural Network Automatic Generation
    Leiva, Lucas
    Acosta, Nelson
    [J]. JOURNAL OF COMPUTER SCIENCE & TECHNOLOGY, 2011, 11 (01): : 15 - 20
  • [35] Radial basis function network estimation of neural activity fields
    Das, S
    Anderson, RW
    Keller, EL
    [J]. IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1559 - 1563
  • [36] An Accelerator for Classification using Radial Basis Function Neural Network
    Mohammadi, Mahnaz
    Ronge, Rohit
    Chandiramani, Jayesh Ramesh
    Nandy, Soumitra
    [J]. 2015 28TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2015, : 137 - 142
  • [37] Digital hardware implementation of a radial basis function neural network
    Nguyen Phan Thanh
    Kung, Ying-Shieh
    Chen, Seng-Chi
    Chou, Hsin-Hung
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2016, 53 : 106 - 121
  • [38] A Hardware Architecture for Radial Basis Function Neural Network Classifier
    Mohammadi, Mahnaz
    Krishna, Akhil
    Nalesh, S.
    Nandy, S. K.
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2018, 29 (03) : 481 - 495
  • [39] The improved radial basis function neural network and its application
    Department of Automation, Shanghai Jião Tong University, Shanghai
    200030, China
    [J]. Artif. Life Rob., 1 (8-11):
  • [40] Hybrid Optimization Scheme for Radial Basis Function Neural Network
    Dey, Vidyut
    Pratihar, Dilip Kumar
    Datta, Gauranga Lal
    [J]. SIMULATED EVOLUTION AND LEARNING, 2010, 6457 : 613 - 622