The spin Nernst effect in tungsten

被引:95
|
作者
Sheng, Peng [1 ]
Sakuraba, Yuya [1 ]
Lau, Yong-Chang [1 ,2 ]
Takahashi, Saburo [3 ]
Mitani, Seiji [1 ,4 ]
Hayashi, Masamitsu [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058577, Japan
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 11期
基金
日本学术振兴会;
关键词
TEMPERATURE-GRADIENT; MAGNETORESISTANCE; DRIVEN;
D O I
10.1126/sciadv.1701503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin Hall effect allows the generation of spin current when charge current is passed along materials with large spin-orbit coupling. It has been recently predicted that heat current in a nonmagnetic metal can be converted into spin current via a process referred to as the spin Nernst effect. We report the observation of the spin Nernst effect in W. In W/CoFeB/MgO heterostructures, we find changes in the longitudinal and transverse voltages with magnetic field when temperature gradient is applied across the film. The field dependence of the voltage resembles that of the spin Hall magnetoresistance. A comparison of the temperature gradient-induced voltage and the spin Hall magnetoresistance allows direct estimation of the spin Nernst angle. We find the spin Nernst angle of W to be similar in magnitude but opposite in sign to its spin Hall angle. Under an open-circuit condition, this sign difference results in the spin current generation larger than otherwise. These results highlight the distinct characteristics of the spin Nernst and spin Hall effects, providing pathways to explore materials with unique band structures that may generate large spin current with high efficiency.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] First-principles linear response description of the spin Nernst effect
    Wimmer, S.
    Koedderitzsch, D.
    Chadova, K.
    Ebert, H.
    [J]. PHYSICAL REVIEW B, 2013, 88 (20)
  • [32] Absence of the Thermal Hall Effect in Anomalous Nernst and Spin Seebeck Effects
    Chen, Yi-Jia
    Huang, Ssu-Yen
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (24)
  • [33] Spin component in the Nernst–Ettingshausen effect in metals with different band structure
    Chiang, Yu.N.
    Dzyuba, M.O.
    [J]. Fizika Nizkikh Temperatur, 2022, 48 (02): : 160 - 165
  • [34] Extrinsic spin Nernst effect in two-dimensional electron systems
    Akera, Hiroshi
    Suzuura, Hidekatsu
    [J]. PHYSICAL REVIEW B, 2013, 87 (07)
  • [35] Magnetoinduced spin Nernst effect in topological nodal-line semimetals
    Yang, Ning-Xuan
    Cheng, Xue-Yan
    Wang, Rui
    Liao, Hui
    Song, Chun-Yan
    Fan, Ting
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 159
  • [36] Nonlinear magnon spin Nernst effect in antiferromagnets and strain-tunable pure spin current
    Kondo, Hiroki
    Akagi, Yutaka
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [37] MAGNETOTHERMOELECTRIC POWER AND NERNST-ETTINGSGAUSEN EFFECT IN TUNGSTEN IN LOW-TEMPERATURE REGION
    VOLKENSHTEYN, NV
    DYAKINA, VP
    KUMIN, PR
    STARTSEV, VY
    [J]. FIZIKA METALLOV I METALLOVEDENIE, 1988, 65 (01): : 110 - 113
  • [38] Conflux of spin Nernst and spin Hall effect in ZnCu2SnSe4 Topological Insulator
    Sharma, Shivam
    De Sarkar, Abir
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (44)
  • [39] Spin component in the nernst-Ettingshausen effect in metals with different band structure
    Chiang , Yu. N.
    Dzyuba, M. O.
    [J]. LOW TEMPERATURE PHYSICS, 2022, 48 (02) : 142 - 147
  • [40] Spin-Nernst Effect in Time-Reversal-Invariant Topological Superconductors
    Matsushita, Taiki
    Ando, Jiei
    Masaki, Yusuke
    Mizushima, Takeshi
    Fujimoto, Satoshi
    Vekhter, Ilya
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (09)