The spin Nernst effect in tungsten

被引:95
|
作者
Sheng, Peng [1 ]
Sakuraba, Yuya [1 ]
Lau, Yong-Chang [1 ,2 ]
Takahashi, Saburo [3 ]
Mitani, Seiji [1 ,4 ]
Hayashi, Masamitsu [1 ,2 ]
机构
[1] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
[2] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058577, Japan
来源
SCIENCE ADVANCES | 2017年 / 3卷 / 11期
基金
日本学术振兴会;
关键词
TEMPERATURE-GRADIENT; MAGNETORESISTANCE; DRIVEN;
D O I
10.1126/sciadv.1701503
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The spin Hall effect allows the generation of spin current when charge current is passed along materials with large spin-orbit coupling. It has been recently predicted that heat current in a nonmagnetic metal can be converted into spin current via a process referred to as the spin Nernst effect. We report the observation of the spin Nernst effect in W. In W/CoFeB/MgO heterostructures, we find changes in the longitudinal and transverse voltages with magnetic field when temperature gradient is applied across the film. The field dependence of the voltage resembles that of the spin Hall magnetoresistance. A comparison of the temperature gradient-induced voltage and the spin Hall magnetoresistance allows direct estimation of the spin Nernst angle. We find the spin Nernst angle of W to be similar in magnitude but opposite in sign to its spin Hall angle. Under an open-circuit condition, this sign difference results in the spin current generation larger than otherwise. These results highlight the distinct characteristics of the spin Nernst and spin Hall effects, providing pathways to explore materials with unique band structures that may generate large spin current with high efficiency.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] SPIN CALORITRONICS Spin Nernst effect
    Prando, Giacomo
    [J]. NATURE NANOTECHNOLOGY, 2017, 12 (12) : 1115 - 1115
  • [2] Spin accumulation in the spin Nernst effect
    Shitade, Atsuo
    [J]. PHYSICAL REVIEW B, 2022, 106 (04)
  • [3] Observation of the spin Nernst effect
    Meyer S.
    Chen Y.-T.
    Wimmer S.
    Althammer M.
    Wimmer T.
    Schlitz R.
    Geprags S.
    Huebl H.
    Kodderitzsch D.
    Ebert H.
    Bauer G.E.W.
    Gross R.
    Goennenwein S.T.B.
    [J]. 1600, Nature Publishing Group (16): : 97 - 981
  • [4] Observation of the spin Nernst effect
    S. Meyer
    Y.-T. Chen
    S. Wimmer
    M. Althammer
    T. Wimmer
    R. Schlitz
    S. Geprägs
    H. Huebl
    D. Ködderitzsch
    H. Ebert
    G. E. W. Bauer
    R. Gross
    S. T. B. Goennenwein
    [J]. Nature Materials, 2017, 16 : 977 - 981
  • [5] Observation of the spin Nernst effect
    Meyer, S.
    Chen, Y. -T.
    Wimmer, S.
    Althammer, M.
    Wimmer, T.
    Schlitz, R.
    Gepraegs, S.
    Huebl, H.
    Koedderitzsch, D.
    Ebert, H.
    Bauer, G. E. W.
    Gross, R.
    Goennenwein, S. T. B.
    [J]. NATURE MATERIALS, 2017, 16 (10) : 977 - +
  • [6] Spin Nernst effect and Nernst effect in two-dimensional electron systems
    Cheng, Shu-guang
    Xing, Yanxia
    Sun, Qing-feng
    Xie, X. C.
    [J]. PHYSICAL REVIEW B, 2008, 78 (04):
  • [7] Recent advances in the spin Nernst effect
    Bose, Arnab
    Tulapurkar, Ashwin A.
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 491
  • [8] Magnon Spin Nernst Effect in Antiferromagnets
    Zyuzin, Vladimir A.
    Kovalev, Alexey A.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [9] Spin Nernst Effect of Antiferromagnetic Magnons in the Presence of Spin Diffusion
    Zhang, Hantao
    Cheng, Ran
    [J]. PHYSICAL REVIEW APPLIED, 2021, 16 (03)
  • [10] Spin Hall and spin Nernst effect in dilute ternary alloys
    Tauber, Katarina
    Fedorov, Dmitry V.
    Gradhand, Martin
    Mertig, Ingrid
    [J]. PHYSICAL REVIEW B, 2013, 87 (16)