Visual Tracking by Adaptive Continual Meta-Learning

被引:1
|
作者
Choi, Janghoon [1 ]
Baik, Sungyong [2 ]
Choi, Myungsub [3 ]
Kwon, Junseok [4 ]
Lee, Kyoung Mu [2 ]
机构
[1] Kookmin Univ, Coll Comp Sci, Seoul 02707, South Korea
[2] Seoul Natl Univ, Dept ECE, ASRI, Seoul 08826, South Korea
[3] Google Res, Seoul 06236, South Korea
[4] Chung Ang Univ, Sch Comp Sci & Engn, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
Visualization; Target tracking; Adaptation models; Training; Knowledge engineering; Classification algorithms; Task analysis; Continual learning; meta learning; object tracking; visual tracking; OBJECT TRACKING;
D O I
10.1109/ACCESS.2022.3143809
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We formulate the visual tracking problem as a semi-supervised continual learning problem, where only an initial frame is labeled. In contrast to conventional meta-learning based approaches that regard visual tracking as an instance detection problem with a focus on finding good weights for model initialization, we consider both initialization and online update processes simultaneously under our adaptive continual meta-learning framework. The proposed adaptive meta-learning strategy dynamically generates the hyperparameters needed for fast initialization and online update to achieve more robustness via adaptively regulating the learning process. In addition, our continual meta-learning approach based on knowledge distillation scheme helps the tracker adapt to new examples while retaining its knowledge on previously seen examples. We apply our proposed framework to deep learning-based tracking algorithm to obtain noticeable performance gains and competitive results against recent state-of-the-art tracking algorithms while performing at real-time speeds.
引用
收藏
页码:9022 / 9035
页数:14
相关论文
共 50 条
  • [41] TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning
    Wang, Ruijie
    Huang, Jingyuan
    Zhang, Yutong
    Li, Jinyang
    Wang, Yufeng
    Zhao, Wanyu
    Liu, Shengzhong
    Mendis, Charith
    Abdelzaher, Tarek
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1659 - 1669
  • [42] Long-Term Visual Object Tracking via Continual Learning
    Zhang, Hui
    Zhu, Mu
    Zhang, Jing
    Li Zhuo
    IEEE ACCESS, 2019, 7 : 182548 - 182558
  • [43] A meta-learning approach to ground symbols from visual percepts
    Bredeche, N
    Chevaleyre, Y
    Zucker, JD
    Alexis, DA
    Sabah, G
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2003, 43 (2-3) : 149 - 162
  • [44] Learning Meta-Learning (LML) dataset: Survey data of meta-learning parameters
    Corraya, Sonia
    Al Mamun, Shamim
    Kaiser, M. Shamim
    DATA IN BRIEF, 2023, 51
  • [45] Adaptive Multi-Teacher Knowledge Distillation with Meta-Learning
    Zhang, Hailin
    Chen, Defang
    Wang, Can
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1943 - 1948
  • [46] A Novel Hierarchical Adaptive Feature Fusion Method for Meta-Learning
    Ding, Enjie
    Chu, Xu
    Liu, Zhongyu
    Zhang, Kai
    Yu, Qiankun
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [47] SPEAKER ADAPTIVE TRAINING USING MODEL AGNOSTIC META-LEARNING
    Klejch, Ondrej
    Fainberg, Joachim
    Bell, Peter
    Renals, Steve
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 881 - 888
  • [48] Bayesian Meta-Learning for Adaptive Traffic Prediction in Wireless Networks
    Wang, Zihuan
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6620 - 6633
  • [49] Environment Adaptive RFID-Based 3D Human Pose Tracking With a Meta-Learning Approach
    Yang, Chao
    Wang, Lingxiao
    Wang, Xuyu
    Mao, Shiwen
    IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION, 2022, 6 : 413 - 425
  • [50] Adaptive-Control-Oriented Meta-Learning for Nonlinear Systems
    Richards, Spencer M.
    Azizan, Navid
    Slotine, Jean-Jacques
    Pavone, Marco
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,