Electrical resistance flash sintering of tungsten carbide

被引:27
|
作者
Mazo, Isacco [1 ]
Molinari, Alberto [1 ]
Sglavo, Vincenzo M. [1 ,2 ]
机构
[1] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Trento, Italy
[2] INSTM, Trento Res Unit, Via G Giusti 9, I-50123 Florence, Italy
关键词
Binderless tungsten carbide; Pressure assisted flash sintering; Electrical resistance sintering; Electrical properties; Positive temperature coefficient for resistivity; THERMAL RUNAWAY; DENSIFICATION KINETICS; MECHANICAL-PROPERTIES; WC; CERAMICS; MICROSTRUCTURES; ZIRCONIA;
D O I
10.1016/j.matdes.2021.110330
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work explores the possibilities for the ultrafast sintering of binderless tungsten carbide by electric/pressure assisted sintering. A limited voltage (3-4 V) in AC condition was applied to WC powder compact in combination with uniaxial pressure. The thermal insulating ceramic die allows the ultrafast heating (10(4) degrees C/min) of the powder compact which undergoes a rapid transition of its electrical properties, from negative to positive dependence of resistivity on temperature, i.e. from NTC to PTC behaviour. Such effect is fundamental for inducing a thermal runaway phenomenon associated with ultrarapid temperature increase and massive electric power dissipation, thus inducing very rapid sintering. The relationship between electrical properties of tungsten carbide and the possibility to achieve "flash sintering" conditions to complete densification in a couple of seconds was investigated. At the optimal conditions of 3.5 V and 4 MPa pressure, pure WC sinters up to 95% in less than 10 s. Longer sintering time after the flash improves only slightly the density, despite a significant energetic consumption. It is also shown that if larger pressure is applied, the flash event duration and final density decrease. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Hot pressing of tungsten carbide with and without sintering additives
    Gubernat, Agnieszka
    Rutkowski, Pawel
    Grabowski, Grzegorz
    Zientara, Dariusz
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 43 : 193 - 199
  • [22] Sintering behaviour of alumina-tungsten carbide composites
    Acchar, W
    Martinelli, AE
    Vieira, FA
    Cairo, CAA
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 284 (1-2): : 84 - 87
  • [23] Formation of stacking faults in tungsten carbide during sintering
    Xiang, Congying
    Liu, Chao
    Wen, Xiao
    Nie, Hongbo
    Hu, Chongze
    Luo, Zhishan
    Li, Yanwen
    Luo, Jian
    Yu, Zhiyang
    CERAMICS INTERNATIONAL, 2020, 46 (10) : 15851 - 15857
  • [24] DEVELOPMENTS IN VACUUM SINTERING OF CEMENTED TUNGSTEN CARBIDE.
    Blasko, W.J.
    Powder Metallurgy, 1976, 8 (01): : 25 - 27
  • [25] Tungsten carbide composite coatings prepared by sintering method
    Hao Junjie
    Li Bin
    Guo Zhimeng
    RARE METAL MATERIALS AND ENGINEERING, 2007, 36 : 739 - 741
  • [26] Grain growth during sintering of tungsten carbide ceramics
    Poetschke, J.
    Richter, V.
    Gestrich, T.
    Michaelis, A.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2014, 43 : 309 - 316
  • [27] Binderless tungsten carbide carbon control with pressureless sintering
    Fox, R. T.
    Nilsson, R.
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2018, 76 : 82 - 89
  • [28] Influence of powder granulometry on the sintering of binderless tungsten carbide
    Arenas, F
    Montoya, E
    Cabezas, M
    Lira, J
    EURO CERAMICS VII, PT 1-3, 2002, 206-2 : 179 - 182
  • [29] Microwave reaction sintering of tungsten carbide cobalt hardmetals
    Gerdes, T
    WillertPorada, M
    Rodiger, K
    Dreyer, K
    MICROWAVE PROCESSING OF MATERIALS V, 1996, 430 : 175 - 180
  • [30] Tungsten carbide composite coatings prepared by sintering method
    Hao, Junjie
    Li, Bin
    Guo, Zhimeng
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2007, 36 (SUPPL. 2): : 739 - 741