On n-trivialities of classical and virtual knots for some unknotting operations
被引:1
|
作者:
Ito, Noboru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Ito, Noboru
[1
]
论文数: 引用数:
h-index:
机构:
Sakurai, Migiwa
[2
,3
]
机构:
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
In this paper, we introduce a new nontrivial filtration, called F-order, for classical and virtual knot invariants; this filtration produces filtered knot invariants, which are called finite type invariants similar to Vassiliev knot invariants. Finite type invariants introduced by Goussarov, Polyak, and Viro are well-known, and we call them finite type invariants of GPV-order. We show that for any positive integer n and for any classical knot K, there exist infinitely many of nontrivial classical knots, all of whose finite type invariants of GPV-order <= n - 1, coincide with those of K (Theorem 1). Further, we show that for any positive integer n, there exists a nontrivial virtual knot whose finite type invariants of our F-order <= n - 1 coincide with those of the trivial knot (Theorem 2). In order to prove Theorem 1 (Theorem 2, resp.), we define an n-triviality via a certain unknotting operation, called virtualization (forbidden moves, resp.), and for any positive integer n, find an n-trivial classical knot (virtual knot, resp.).
机构:
Tokyo Womans Christian Univ, Sch Arts & Sci, Dept Math, Suginami Ku, 2-6-1 Zempukuji, Tokyo 1678585, JapanTokyo Womans Christian Univ, Sch Arts & Sci, Dept Math, Suginami Ku, 2-6-1 Zempukuji, Tokyo 1678585, Japan
机构:
Tokyo Womans Christian Univ, Sch Arts & Sci, Dept Math, Suginami Ku, 2-6-1 Zempukuji, Tokyo 1678585, JapanTokyo Womans Christian Univ, Sch Arts & Sci, Dept Math, Suginami Ku, 2-6-1 Zempukuji, Tokyo 1678585, Japan
机构:
South Ural State Univ, Dept Math Mech & Comp Sci, Chelyabinsk 454080, RussiaSouth Ural State Univ, Dept Math Mech & Comp Sci, Chelyabinsk 454080, Russia
Andreevna, Akimova Alena
Matveev, Sergei Vladimirovich
论文数: 0引用数: 0
h-index: 0
机构:
Chelyabinsk State Univ, Dept Math, Chelyabinsk 454001, Russia
Russian Acad Sci, Inst Math & Mech, Ural Branch, Ekaterinburg 620990, RussiaSouth Ural State Univ, Dept Math Mech & Comp Sci, Chelyabinsk 454080, Russia