On Particle Filters with High Complexity Combinatorial Likelihood Functions

被引:0
|
作者
Ferguson, Samuel J. [1 ]
Silver, Jeffrey [1 ]
Streit, Roy [1 ]
机构
[1] Metron Inc, 1818 Lib St,Suite 600, Reston, VA 20190 USA
关键词
Particle filters; assignment; analytic combinatorics; Cauchy integral; generating functional; cross-derivative; saddle point; stochastic flow; intensity filter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Saddle point approximation methods are proposed for particle filters whose likelihood functions have high computational complexity due to combinatorial enumerations of the kind that arises in assignment problems, e.g., in multitarget, multisensor, and smoothing filters. Using techniques drawn from random matrix theory, it is shown that the computational complexity of the approximation depends on the cube of the number of measurements or the number of targets, whichever is smaller, for the class of probabilistic data association filters. The saddle point approximation method is also applicable to the class of stochastic flow filters.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] COMBINATORIAL COMPLEXITY OF SIGNED DISCS
    SOUVAINE, DL
    YAP, CK
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (04): : 207 - 223
  • [42] Combinatorial interpretation of Kolmogorov complexity
    Romashchenko, A
    Shen, A
    Vereshchagin, N
    15TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2000, : 131 - 137
  • [43] THE COMBINATORIAL COMPLEXITY OF POLYGON OVERLAY
    SAALFELD, A
    AUTO CARTO 9 : NINTH INTERNATIONAL SYMPOSIUM ON COMPUTER-ASSISTED CARTOGRAPHY, 1989, : 278 - 287
  • [44] On the Combinatorial Complexity of Approximating Polytopes
    Arya, Sunil
    da Fonseca, Guilherme D.
    Mount, David M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (04) : 849 - 870
  • [45] COMPLEXITY OF SOME COMBINATORIAL CONSTRUCTIONS
    CARSTENS, HG
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1977, 23 (02): : 121 - 130
  • [46] Kolmogorov Complexity as a Combinatorial Tool
    Shen, Alexander
    TWENTY YEARS OF THEORETICAL AND PRACTICAL SYNERGIES, CIE 2024, 2024, 14773 : 27 - 31
  • [47] Combinatorial interpretation of Kolmogorov complexity
    Romashchenko, A
    Shen, A
    Vereshchagin, N
    THEORETICAL COMPUTER SCIENCE, 2002, 271 (1-2) : 111 - 123
  • [48] On the Combinatorial Complexity of Approximating Polytopes
    Sunil Arya
    Guilherme D. da Fonseca
    David M. Mount
    Discrete & Computational Geometry, 2017, 58 : 849 - 870
  • [49] Combinatorial Complexity of Convex Sequences
    Alex Iosevich
    S. Konyagin
    M. Rudnev
    V. Ten
    Discrete & Computational Geometry, 2006, 35 : 143 - 158
  • [50] Combinatorial complexity of regular languages
    Shur, Arseny M.
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2008, 5010 : 289 - 301